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简介 
INTRODUCTION



Introduction
• NLP is One of The Most Challenging Tasks in A.I. 

• Understanding natural language is key to achieve strong A.I.
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Introduction
• Why NLP is Hard?
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Introduction
• Why NLP is Hard? 

• Language is highly abstracted without determined physical representation


• Requires deep understanding and sometimes needs logical inference / commonsense
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Learning Good Text Representations is the Foundation in NLP

他⼀把把把把住了

The man could’t lift his son because he was so [weak/heavy].

Who was [weak/heavy]? 

货拉拉拉不拉拉布拉多？



Introduction
• Pre-trained Models in NLP 

• ‘Sesame Street’ family and OpenAI GPT family
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Introduction
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传统⽂本表示⽅法 
TRADITIONAL APPROACHES FOR TEXT REPRESENTATION



One-hot1

2 word2vec

3 GloVe



One-Hot
• Why should we use vector representations for text?


• Easy and eligible for calculation (similarity, distance, etc.)


• Training neural models


• Traditional Approaches for Text Representation


• One-hot Representation


• word2vec


• GloVe


• NNLM, RNNLM, … (not covered in this talk)
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One-Hot
• One-hot Representations


• A binary vector with all zero values except for the index of the word is set to one


• Drawbacks


• failed to capture the similarity of the words


• Can not express highly abstract meaning
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word2vec
• Distributed Representation of Words and Phrases and Their 

Compositionality 

• Efficient Estimation of Word Representation in Vector Space


• Instead of capturing word co-occurrences, predict surrounding words of every word


• Famous CBOW and Skip-gram model
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Mikolov et al., 2013. Efficient Estimation of Word Representations in Vector Space
Mikolov et al., NeurIPS 2013. Distributed Representations of Words and Phrases and Their Compositionality

https://code.google.com/archive/p/word2vec/


word2vec
• CBOW: Using context to predict the central token 

• Skip-Gram: Using central token to predict its context
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CBOW Skip-gram

Mikolov et al., 2013. Efficient Estimation of Word Representations in Vector Space
Mikolov et al., NeurIPS 2013. Distributed Representations of Words and Phrases and Their Compositionality



word2vec
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Mikolov et al., 2013. Efficient Estimation of Word Representations in Vector Space
Mikolov et al., NeurIPS 2013. Distributed Representations of Words and Phrases and Their Compositionality

King - Man +  Woman = Queen



GloVe
• GloVe: Global Vectors for Word Representation 

• word2vec only considers LOCAL context 


• GloVe incorporates global information during word vector training


• Other advantages: Fast training; Scalable to huge corpora; Good performance even 
with small corpus/vectors
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Pennington et al., EMNLP 2014. GloVe: Global Vectors for Word Representation

https://nlp.stanford.edu/projects/glove/


GloVe
• Main Advantage over word2vec: Introduce GLOBAL Information 

• Observation: word-word co-occurrence probabilities have the potential for encoding 
some form of meaning


• Training objective is to learn word vectors such that their dot product equals the 
logarithm of the words’ probability of co-occurrence
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Pennington et al., EMNLP 2014. GloVe: Global Vectors for Word Representation

P(solid | ice) > P(gas | ice)

P(solid |steam) < P(gas |steam)

Both ice and steam are less related 
to fashion

Ratio much greater/less than 1 
matters



GloVe
• Highlights of GloVe
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Pennington et al., EMNLP 2014. GloVe: Global Vectors for Word Representation
Nearest Neighbors Linear Substructures



GloVe
• Pre-trained GloVe embeddings have been used in neural network models on a 

regular basis


• Tips 

• Choose pre-trained GloVe vectors based on your TOPIC


• Performance: High Dimension > Low Dimension? Not always


• If you are using a small dataset, it’s better to freeze the embedding in case of 
overfitting
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Pennington et al., EMNLP 2014. GloVe: Global Vectors for Word Representation



基于上下⽂的语⾔模型 
CONTEXTUALIZED LANGUAGE MODELS



Pre-PLMs
• Disadvantages of Static Embeddings 

• Many words have different meanings
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Apple

the apple of my eye

…

0.1 0.2 0.8 0.3

0.1 0.2 0.8 0.3

0.1 0.2 0.8 0.3

SAME!



Pre-PLMs
• Disadvantages of Static Embeddings 

• The word vector should be adjusted according to its context
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Apple

the apple of my eye

…

0.1 0.2 0.8 0.3

0.1 0.2 0.8 0.5

0.9 0.2 0.8 0.3



CoVe1

2 ELMo



CoVe
• CoVe: Contextualized Word Vectors 

• The first paper that proposes a contextualized text representation approach


• Transfer the knowledge in NMT to general NLP tasks
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McCann et al., NeurIPS 2017. Learned in Translation: Contextualized Word Vectors

https://github.com/salesforce/cove


CoVe
• Training Phase: train a machine translation model 

• Given a source sentence , target sentence 


• Attentional Decoder


• Output

wx wz
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two-layer bidirectional-LSTM

McCann et al., NeurIPS 2017. Learned in Translation: Contextualized Word Vectors



CoVe
• Inference Phrase 

• Given a source sentence 


• How to use CoVe in a downstream task?


• Requires the SAME dimension of GloVe and CoVe

w
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Easy!

McCann et al., NeurIPS 2017. Learned in Translation: Contextualized Word Vectors



CoVe
• Experimental Results 

• Training: En-De 30K (small), 209K (medium), 7M (large)


• Moderate improvements over traditional word representations, more seems like a 
remedy for word/char embedding

29

*S=Small, M=Medium, L=Large
McCann et al., NeurIPS 2017. Learned in Translation: Contextualized Word Vectors



ELMo
• ELMo: Embeddings from Language Models (NAACL 2018 Best Paper)


• Pre-training a deep bidirectional LM on a large corpus


• ELMo can be easily added to the existing models
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Peters et al., NAACL 2018. Deep contextualized word representations

https://github.com/allenai/bilm-tf


ELMo
• Training Phase: Bidirectional Language Model (BiLM) 

• Given a sequence of  tokens 


• Forward LM


• Backward LM


• BiLM

N (t1, t2, …, tN)
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Peters et al., NAACL 2018. Deep contextualized word representations



ELMo
• Training Phase: Bidirectional Language Model (BiLM) 

• For each token , a L-layer BiLM computes a set of  representations


• Collapse all layers in  into a single vector


• Weighting of all BiLM layers

tk 2L + 1

R

32

BiLM output
Embedding

Peters et al., NAACL 2018. Deep contextualized word representations



ELMo
• Inference Phase 

• Just add one layer of ELMo at the same location as pre-trained word representations


• Useful Tips


• For some tasks (such as SQuAD), adding another ELMo representation at RNN 
output could give slight improvements 


• Add some dropout (0.5 is a good default value) to the ELMo output


• Fine-tune the pre-trained ELMo if necessary
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Xfinal = concat[Xchar, Xword, XELMo]

Peters et al., NAACL 2018. Deep contextualized word representations



ELMo
• Experimental Results 

• Significant improvements over various NLP tasks


• Moderate improvements when biLM is fine-tuned for the downstream task

34

Peters et al., NAACL 2018. Deep contextualized word representations

From Appendix A.1



经典预训练语⾔模型 
PRE-TRAINED LANGUAGE MODELS



PLMs
• Main Disadvantages of CoVe/ELMo 

• Data


• Training data is either restricted to parallel corpus or relatively small


• Model


• Training parameters are relatively less (compared to PLMs)


• Usage


• Representations remains FIXED once the LMs are trained


• Unable to unleash the power of LARGE PARAMETERS
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PLMs

37

Big (Unsupervised) 

Data

Input Sequence

Deep Transformers
(>12 layers)

Deeper Neural

Networks

Bigger and Faster

Clusters

And more 
money

GPT

GPT-2

GPT-3



GPT1

2 BERT

3 XLNet

4 RoBERTa

5 ALBERT

6 ELECTRA



GPT
• GPT: Generative Pre-Training


• Generative pre-training + discriminative fine-tuning scheme


• Pre-training data size: 800M words (BooksCorpus)
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Radford et al., 2018. Improving Language Understanding by Generative Pre-Training

https://github.com/openai/finetune-transformer-lm


GPT
• Training Phase


• Learning a high-capacity LM on a large corpus


• Training a standard left-to-right Transformer-based LM


• Using a Transformer Decoder

40

Position Embedding Matrix

Context Vector of Tokens Token Embedding Matrix

Radford et al., 2018. Improving Language Understanding by Generative Pre-Training



GPT
• Inference Phase


• Fine-tune the model to a discriminative task with labeled data


• Given a labeled dataset , input tokens , label 


• Using auxiliary loss could improve performance

C x1, . . . , xm y

41

Transformer block’s activation

Radford et al., 2018. Improving Language Understanding by Generative Pre-Training



GPT
• Fine-tuning for Different Tasks

42

Radford et al., 2018. Improving Language Understanding by Generative Pre-Training



GPT
• Experimental Results

43

Radford et al., 2018. Improving Language Understanding by Generative Pre-Training



BERT
• BERT: Bidirectional Encoder Representations from 

Transformers (NAACL 2019 Best Paper)


• Demonstrate the importance of bidirectional pre-training for 
language representations


• Pre-trained representations eliminate the needs of many heavily-
engineered task-specific architectures


• Pre-training data size: 800M (BooksCorpus) + 2500M (Wikipedia)

44

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://github.com/google-research/bert


BERT
• Comparisons of GPT/BERT/ELMo


• GPT: unidirectional left-to-right Transformer LM


• ELMo: concatenation of independent left-to-right and right-to-left LSTM LM


• BERT: bi-directional Transformer 

45

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT
• Overview


• Neural architecture


• Input representation


• Deep Transformer-based encoder


• Two pre-training tasks


• MLM: Masked Language Model


• NSP: Next Sentence Prediction

46

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT
• Pre-training Task I: Masked Language Model (MLM)


• Mask out several input words, and then predict the masked words


• Less masking: Easy to pick them out


• More masking: Not enough context


• Take a balance: use a percentage of 15% 

47

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT
• Pre-training Task I: Masked Language Model (MLM)


• Problem: Mask token never appear at fine-tuning stage (realistic data)


• Solution: 15% of the words to predict, but don’t replace with [MASK] 100% of the 
time

48

• 80% of the time, replace with [MASK]

– went to the store → went to the [MASK] 


• 10% of the time, replace random word

– went to the store → went to the apple 


• 10% of the time, keep the same word

– went to the store → went to the store 

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT
• Implementation for MLM


• File: create_pretraining_data.py


• Function: create_masked_lm_predictions()


• Arguments


• Tokens (list): tokenized sequence tokens


• masked_lm_prob (float): how many words (proportion) should be masked


• max_predictions_per_seq (int): maximum predictions per sequence


• vocab_words (list): vocabulary


• rng: random.Random(seed)

49

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L342


BERT
• Step 1: Generate candidate indices


• Skip [CLS] and [SEP]


• Shuffle candidate indexes


• Determine the prediction number

50

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L342


BERT
• Step 2: Mask out proper tokens


• Regular checks to avoid overflow


• Generate random number to determine the masking action
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Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://github.com/google-research/bert/blob/master/create_pretraining_data.py#L342


BERT
• Pre-training Task II: Next Sentence Prediction (NSP)


• Learn the relationships between sentences (contextual information)


• Predict whether Sentence B is the actual sentence that comes after Sentence A, or a 
random sentence
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Sentence A = The man went to the store.

Sentence B = He bough a gallon of milk.

Label = IsNextSentence

Sentence A = The man went to the store.

Sentence B = Penguins are flightless.

Label = NotNextSentence

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT
• Input Representation


• Use a 30,000 WordPiece vocabulary


• The final input is the sum of three embeddings


• Token Embeddings, Segment Embeddings, Position Embeddings

53

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT
• Deep Transformer Encoder


• Typically a 12 or 24-layer Transformers


• Main loop


• Multi-head Self-attention Layer


• Residual Linear Projection Layer 
(+LayerNorm)


• Intermediate Layer


• Residual Output Layer (+LayerNorm)

54

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Transformer Block

Multi-head 
Self-attention Layer

Residual Linear
Projection Layer

Intermediate Layer

Residual
Output Layer

⊕

⊕



BERT
• Fine-tuning BERT


• Input


• SPC: [CLS] sent1


• SSC: [CLS] sent1 [SEP] sent2


• QA: [CLS] Q [SEP] P


• Leave everything to BERT 😄


• Output


• SPC/SSC: [CLS] → label


• QA: start/end pointer network 

55

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



Let’s read the code!
Official implementation



BERT
• SQuAD (Stanford Question Answering Dataset)


• A span-extraction reading comprehension dataset 
that contains over 100,000 human-annotated 
questions


• Passage: Passages from Wikipedia pages, segment 
into several small paragraphs


• Question: Human-annotated, including various 
question types (what/when/where/who/how/why, etc.)


• Answer: Continuous segments (text spans) in the 
passage, which has a larger search space, and much 
harder to answer than cloze-style RC

57

Rajpurkar et al., EMNLP 2016. SQuAD: 100,000+ Questions for Machine Comprehension of Text



BERT
• Implementation for fine-tuning SQuAD (reading comprehension)


• File: run_squad.py


• Function: create_model()


• Arguments


• bert_config (json): BERT config file


• is_training (bool): training mode option


• input_ids (tensor): input ids for token embeddings


• input_mask (tensor): input mask for indicating non-padding positions


• segment_ids (tensor): segment_id tensor


• use_one_hot_embeddings (bool)
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Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://github.com/google-research/bert/blob/master/run_squad.py#L550


BERT
• Step 1: Generate BERT representation


• Define a BERT model


• Generate sequential output (3D-tensor: <batch, seq_len, hid_size>)

59

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://github.com/google-research/bert/blob/master/run_squad.py#L550


BERT
• Step 2: Simple output layer for span prediction


• Define a fully-connected (dense) layer


• Squeeze the vector to a scalar to get raw span output
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Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://github.com/google-research/bert/blob/master/run_squad.py#L550


BERT
• Step 3: Create loss for answer span


• Function: model_fn_builder()→ compute_loss()


• Compute regular cross-entropy loss for the start and end positions

61

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://github.com/google-research/bert/blob/master/run_squad.py#L550


BERT
• Experiments: setups


• Data: Wikipedia + BookCorpus (33B words in total)


• Training: 256 batch * 512 max_token_length, 1M steps


• Warmup: 10K steps (1% of total training steps)


• Time: 4 days


• Computing Device


• BERT-base: 4 Cloud TPUs in Pod config (16 chips)


• BERT-large: 16 Cloud TPUs (64 chips)

62

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

💡1 TPU has 2 cores, 
and 4 chips each



BERT
• TPU (Tensor Processing Units)

63

Google Cloud TPU. https://cloud.google.com/tpu 

NVIDIA V100 TPU v2 TPU v3

Hardware

Architecture NVIDIA Volta GPU Google Cloud TPU Google Cloud TPU

Memory 16GB / 32GB 64GB 128GB

FLOPS
Double: 7 TFLOPS

Single: 14 TFLOPS

DL: 112 TFLOPS

180 TFLOPS 420 TFLOPS

https://cloud.google.com/tpu


BERT
• Question: How much does it cost to train such a model? 

• Take BERT-large as an example,

64

16 Cloud TPUs = 16 * 4.5 = 72 USD / hour
One-day cost = 72 * 24 = 1,728 USD

Four-day cost = 1,728 USD * 4 = 6,912 USD

6,912 USD ≈ 47,715 CNY

Actually, it costs way more, as you won’t be able 
to successfully train a model only once!

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT
• Experimental Results


• significant improvements over GPT/ELMo on GLUE and SQuAD

65

Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



BERT
• BERT + DAE + AoA (by HFL)


• Outperformed human performance (EM/F1) on SQuAD 2.0 
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BERT-wwm
• Original Extension to BERT I: Whole Word Masking (wwm) 

• Original masking: randomly select WordPiece tokens to mask.


• WWM: always mask all of the tokens corresponding to a word at once. 


• The overall masking rate remains the same.

67

Original Sentence the man jumped up , put his basket on phil ##am ##mon ' s head

Original Masked Input [M] man [M] up , put his [M] on phil [M] ##mon ' s head

BERT-wwm Input the man [MASK] up , put his basket on [M] [M] [M] ' s head



BERT-wwm
• Important Note on Whole Word Masking 

• ‘Masking’ does NOT only represent replacing a word into [MASK] token. 


• Masking = ‘replace into [MASK]’, ’keep original word’ or ‘replaced by random words’.
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Original Sentence: there is an apple tree nearby.

Tokenized Sentence: ["there", "is", "an", "ap", "##p", "##le", "tr", "##ee", "nearby", "."]

w/o wwm

there [MASK] an ap [MASK] ##le tr [RANDOM] nearby .

[MASK] [MASK] an ap ##p [MASK] tr ##ee nearby .

there is [MASK] ap ##p ##le [MASK] ##ee [MASK] .

there is [MASK] ap [MASK] ##le tr ##ee nearby [MASK] .

there is an! ap ##p ##le tr [MASK] nearby [MASK] .

there is an [MASK] ##p [MASK] tr ##ee nearby [MASK] .

w/ wwm

there is an [MASK] [MASK] [RANDOM] tr ##ee nearby .

there is! [MASK] ap ##p ##le tr ##ee nearby [MASK] .

there is [MASK] ap ##p ##le [MASK] [MASK] nearby .

there [MASK] [MASK] ap ##p ##le tr ##ee [RANDOM] .

there is an ap ##p ##le [MASK] [MASK] nearby [MASK] .

💡



BERT-wwm
• Experimental Results on BERT-wwm 

• Significant improvements over vanilla MLM
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Model SQuAD 1.1 
F1/EM

Multi NLI  
Accuracy

BERT-Large, Uncased (Original) 91.0/84.3 86.05

BERT-Large, Uncased (WWM) 92.8/86.7 87.07

BERT-Large, Cased (Original) 91.5/84.8 86.09

BERT-Large, Cased (WWM) 92.9/86.7 86.46



• Original Extension to BERT II: N-gram Masking 

• Masking a consecutive N-gram, increasing the difficulty in MLM


• Yields another gain over MLM/WWM


• Important Note: WWM/NM ONLY affects the pre-training stage

70

N-gram Masking

We went to the store to buy some fruits.


→ We went to [M] store to [M] some [M]. 


→ We went to [M] [M] [M] buy some fruits.


Original MLM

N-gram Masking

💡



XLNet
• XLNet: Transformer-XL Net 

• An autoregressive language modeling that could capture bidirectional contexts


• Resolve the pretraining-finetuning discrepancy in denoising auto-encoder (BERT)

71

Yang et al., NeurIPS 2020. XLNet: Generalized Autoregressive Pretraining for Language Understanding

https://github.com/zihangdai/xlnet


XLNet
• Standard Language Model 

• Left-to-right factorization: 1→2→3→4


• P(x) = P(x1)P(x2 |x1)P(x3 |x1,2)P(x4 |x1,2,3) . . .

72

Yang et al., NeurIPS 2020. XLNet: Generalized Autoregressive Pretraining for Language Understanding



XLNet
• Permutation Language Model 

• Given a sequence  of length 


• Uniformly sample a factorization order  from all possible permutations


• Maximize the permuted log-likelihood

x T

z

73

Yang et al., NeurIPS 2020. XLNet: Generalized Autoregressive Pretraining for Language Understanding



XLNet
• Permutation Language Model 

• Change the factorization order to: 4→1→3→2


• P(x) = P(x4)P(x1 |x4)P(x3 |x1,4)P(x2 |x1,3,4) . . .

74

Yang et al., NeurIPS 2020. XLNet: Generalized Autoregressive Pretraining for Language Understanding
Bidirectional Context



XLNet
• Two-Stream Self-Attention


• Content stream attention and Query stream attention

75

Yang et al., NeurIPS 2020. XLNet: Generalized Autoregressive Pretraining for Language Understanding



XLNet
• A Fair Comparison with BERT 


• XLNet yields better performance over BERT under a comparable setting

76

Yang et al., NeurIPS 2020. XLNet: Generalized Autoregressive Pretraining for Language Understanding

Read more



RoBERTa
• RoBERTa: Robustly optimized BERT pretraining approach


• Investigate important choices in BERT design, such as masking strategies, the use of 
next sentence prediction, etc.


• Propose CC-News dataset, confirming that more data will lead to better performance

77

Liu et al., arXiv 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach

https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md


RoBERTa
• Static Masking vs. Dynamic Masking


• Increasing the randomness of the masking tokens


• Static: Masking pattern is determined AFTER pre-processing


• Dynamic: Masking pattern is determined DURING pre-training

78

went to the store → went to the [MASK]


went to the store → went to the [MASK]


went to the store → went to the [MASK]


went to the store → went to the [MASK]


went to the store → went to the [MASK]

went to the store → went to the [MASK]


went to the store → went to [MASK] store


went to the store → [MASK] to the store


went to the store → went to the store


went to the store → went [MASK] the store

Static Masking Dynamic Masking

Liu et al., arXiv 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach

Epoch



RoBERTa
• Necessity of NSP Task 

• Removing NSP task yields marginal improvements

79

Liu et al., arXiv 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach

Original BERT implementation
Natural sentences

Could cross the document boundary
Could NOT cross the document boundary



RoBERTa
• Larger Batches with More Data 

• If possible, use a larger batch with more data


• A proper extension to the pre-training steps also improves the performance


• It has been widely proven that using a larger batch is ESSENTIAL for pre-training

80

💡

Liu et al., arXiv 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach



RoBERTa
• Final Choices for RoBERTa: Sum Up All Good Things


• Pre-training Tasks 

• Dynamic Masking


• Full-Sentences without NSP loss


• Pre-training Setups 

• Large mini-batches: 256 → 8192


• Large byte-level BPE: 30k → 50K

81

Liu et al., arXiv 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach



RoBERTa
• Experimental Results


• Comparable Setting: XLNet > RoBERTa > BERT


• Training even longer may further improve the performance of RoBERTa
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Liu et al., arXiv 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach



ALBERT
• ALBERT: A Lite BERT for Self-supervised Learning of Language 

Representations


• Aims to provide a parameter-compact BERT


• Two techniques are proposed: factorized embedding parameterization, cross-layer 
parameter sharing

83

Lan et al., ICLR 2020. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

https://github.com/google-research/albert


ALBERT
• Factorized Embedding Parameterization


• In original BERT, embedding_size == hidden_size


• With FEP,


• For example, V = 30,000, H = 1024, E = 128

84

O(V × H) O(V × E + E × H)

BERT 
V*H = 30000*1024=30,720,000

ALBERT 
V*E+E*H = 30000*128+128*1024=3,971,072

>
Lan et al., ICLR 2020. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations



ALBERT
• Cross-Layer Parameter Sharing 

• The weight for each Transformer layer is shared


• Parameter sharing is parameter efficient but NOT memory efficient!
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💡

W1

W2

W3Total Params = 
W1+ W2+ W3 

Disk Usage = 
W1+ W2+ W3 

Memory Usage = 
W1+ W2+ W3 W

W

W

Total Params = W

Disk Usage = W


Memory Usage = 3W

This will NOT save your 
GPU/TPU memory!

Lan et al., ICLR 2020. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations



ALBERT
• Sentence Order Prediction (SOP)


• NSP = coherence prediction + topic prediction


• But the topic prediction is quite easy (i.e. NSP)


• In SOP, 


• Positive examples: same as BERT, two consecutive text segments


• Negative examples: swapped two consecutive text segments
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Sentence 1 Sentence 2

Sentence 2 Sentence 1

Lan et al., ICLR 2020. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

➕
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ALBERT
• Effectiveness of Each Component


• ALBERT is much compact in size 
(parameters) but NOT in speedup


• ALBERT-large ≈ BERT-base


• ALBERT-xlarge  ≈ BERT-large


• ALBERT-xxlarge yields the best performance


• Parameter sharing and embedding 
decomposition HURTS performance


• SOP task yields better performance than 
NSP/None
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ELECTRA
• ELECTRA: Efficiently Learning an Encoder that Classifies Token 

Replacements Accurately


• A new generator-discriminator framework for pre-trained language model


• Efficient training scheme that achieves much quicker pre-training
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Clark et al., ICLR 2020. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

https://github.com/google-research/electra


ELECTRA
• Overall Architecture


• Generator-Discriminator structure, similar to GAN (Goodfellow et al., 2014)


• Generator: a small MLM that learns to predict the original words of masked tokens


• Discriminator: discriminate whether the input token in replaced by generator
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ELECTRA
• Generator: a small MLM


• Step 1: mask out a random (15%) set of positions in the input sequence


• Step 2: learns to recover the original words
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Step 1

Step 2

the

cooked

Clark et al., ICLR 2020. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators



ELECTRA
• Discriminator: regular BERT


• Step 1: replace masked tokens with generated tokens


• Step 2: discriminate whether the token is replaced
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Step 1

Step 2

Clark et al., ICLR 2020. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators



ELECTRA
• ELECTRA is NOT trained like a GAN


• It is impossible to BP through sampling from generator


• They tried to use reinforcement learning (RL) but it results in a worse performance


• Final loss is 
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💡

Clark et al., ICLR 2020. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

Disconnected!



ELECTRA
• Experimental Results


• ELECTRA-small/base yields significant improvements over BERT counterparts
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Clark et al., ICLR 2020. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators



ELECTRA
• Experimental Results


• ELECTRA-large results on GLUE-dev/test
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Summary
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GPT BERT XLNet RoBERTa ALBERT ELECTRA
Type AR AE AR AE AE AE

Embedding T T/S/P T/S/P T/S/P T/S/P T/S/P

Masking / T / T T T

LM Task LM MLM PLM MLM MLM Gen-Dis

Paired Task / NSP / SOP /


Data Source BC BC+Wiki BC+Wiki+Giga5

+CW+CC

BC+Wiki+CCNews
+OWT+Stories

BC+Wiki BC+Wiki+Giga5

+CW+CC

Data Size / / 110G 160G 16G ~110G

Tokenization BPE WordPiece SentencePiece BPE SentencePiece WordPiece

# Tokens 800M 3300M 32.89B / / ~33B

# Vocabulary 40,000 30,522 32,000 50,000 30,000 30,522

# MaxSeqLen 512 512 512 512 512 512

# Layers 12 12/24 12/24 12/24 12/24/24/12 12/12/24



中⽂预训练语⾔模型 
CHINESE PRE-TRAINED LANGUAGE MODELS



BERT-wwm1

2

3

4

ERNIE

NEZHA

ZEN

5 MacBERT



  
• Pre-Training with Whole Word Masking for Chinese BERT


• We adapt whole word masking strategy in Chinese context


• We also compare the state-of-the-art Chinese pre-trained models in detail, including 
BERT, ERNIE, BERT-wwm
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Cui et al., arXiv 2019. Pre-Training with Whole Word Masking for Chinese BERT

https://github.com/ymcui/Chinese-BERT-wwm


• Chinese BERT with Whole Word Masking


• Chinese word is comprised of characters


• We use LTP for Chinese Word Segmentation (CWS) to detect word boundary
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Cui et al., arXiv 2019. Pre-Training with Whole Word Masking for Chinese BERT

Remember: [MASK] could 
also be ‘replace by another 

word’ or ‘keep original word’

  



ERNIE
• ERNIE: Enhanced Representation through kNowledge IntEgration


• Masking units instead of only tokens


• Phrase-level masking


• Entity-level masking


• Over 173M sentences for pre-training
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Sun et al., arXiv 2019. ERNIE: Enhanced Representation through Knowledge Integration

https://github.com/PaddlePaddle/ERNIE


ERNIE
• Comparisons: BERT vs. ERNIE
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Sun et al., arXiv 2019. ERNIE: Enhanced Representation through Knowledge Integration



ERNIE
• Basic-Level Masking 

• 15% basic language units are masked.


• Phrase-Level Masking 

• Consecutive words are masked. The phrase boundary is identified by lexical analysis 
and chunking tools.


• Entity-Level Masking 

• Mask named entity, such as person names, locations, organizations, etc.


•
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Sun et al., arXiv 2019. ERNIE: Enhanced Representation through Knowledge Integration



ERNIE
• ERNIE 2.0: A Continual Pre-training Framework for Language 

Understanding 

• A continual pre-training framework in an incremental way


• A bunch of new unsupervised pre-training tasks


• Pre-training data size: 7378M tokens
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Sun et al., AAAI 2020. ERNIE 2.0: A Continual Pre-training Framework for Language Understanding



• Overall Framework

ERNIE
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Sun et al., AAAI 2020. ERNIE 2.0: A Continual Pre-training Framework for Language Understanding



• Overall Framework

ERNIE
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Sun et al., AAAI 2020. ERNIE 2.0: A Continual Pre-training Framework for Language Understanding



NEZHA
• NEZHA: NEural ContextualiZed Representation for CHinese LAnguage 

Understanding


• Propose a relative position encoding scheme for attention calculation


• Pre-training data size: 202M (Wiki) + 4734M (Baike) + 5600M (news) ≈ 10B tokens
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Wei et al., arXiv 2019. NEZHA: Neural Contextualized Representation for Chinese Language Understanding

https://github.com/huawei-noah/Pretrained-Language-Model


NEZHA
• Training Phase: Functional Relative Positional Encoding 

• Relational position information is considered during attention calculation

107

Wei et al., arXiv 2019. NEZHA: Neural Contextualized Representation for Chinese Language Understanding



NEZHA
• Training Phase: Other Features 

• Whole word masking


• Mixed precision training


• Also known as using FP16


• LAMB optimizer


• Better scalability for large batch training
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Wei et al., arXiv 2019. NEZHA: Neural Contextualized Representation for Chinese Language Understanding



NEZHA
• Experimental Results
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Wei et al., arXiv 2019. NEZHA: Neural Contextualized Representation for Chinese Language Understanding



ZEN
• ZEN: Pre-training Chinese (Z) Text Encoder Enhanced by N-gram 

Representations


• Using N-gram information to enhance the text encoder


• Pre-training data size: 474M tokens (Chinese Wikipedia)
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Diao et al., arXiv 2019. ZEN: Pre-training Chinese Text Encoder Enhanced by N-gram Representations



ZEN
• Training Phase: N-gram Extraction


• Prepare an N-gram lexicon


• N-gram extraction during pre-training
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Diao et al., arXiv 2019. ZEN: Pre-training Chinese Text Encoder Enhanced by N-gram Representations



ZEN
• Training Phase: Encoding N-grams (B)


• Using an N-gram embedding matrix to project 
N-grams into embedding representation


• Transformer-based N-gram encoder


• Training Phase: Representing N-grams (A)


• Add N-gram representation back to original 
BERT w.r.t. each token in N-gram


• Layer-by-layer addition
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Diao et al., arXiv 2019. ZEN: Pre-training Chinese Text Encoder Enhanced by N-gram Representations



ZEN
• Experimental Results


• Sequence labeling tasks yield better performance than classification tasks
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Diao et al., arXiv 2019. ZEN: Pre-training Chinese Text Encoder Enhanced by N-gram Representations

R: random

P: from pre-train



 
• MacBERT: MLM as correction BERT 

• Evaluate state-of-the-art PLMs in Chinese with relatively comparable settings


• Propose a new PLM called MacBERT


• Create a series of Chinese PLMs and open-source to the community
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Cui et al., Findings of EMNLP 2020. Revisiting Pre-trained Models for Chinese Natural Language Processing

https://github.com/ymcui/MacBERT


• MLM as correction 

• Solve the discrepancy of pre-training and fine-tuning: using the similar word 


• Other techniques: whole word masking, N-gram masking
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Cui et al., Findings of EMNLP 2020. Revisiting Pre-trained Models for Chinese Natural Language Processing

 

• 80% of the time, replace with [M]


–⽤ 语 ⾔ 模 型 [M] [M] 下 ⼀ 个 词


• 10% of the time, replace random word


–⽤ 语 ⾔ 模 型 预 ⻅ 下 ⼀ 个 词 


• 10% of the time, keep the same word


–⽤ 语 ⾔ 模 型 预 测 下 ⼀ 个 词 

⽤ 语 ⾔ 模 型 预 测 下 ⼀ 个 词

• 80% of the time, replace with [M]


–⽤ 语 ⾔ 模 型 预 ⻅ 下 ⼀ 个 词


• 10% of the time, replace random word


–⽤ 语 ⾔ 模 型 好 是 下 ⼀ 个 词 


• 10% of the time, keep the same word


–⽤ 语 ⾔ 模 型 预 测 下 ⼀ 个 词 

B 
E 
R 
T

M 
A 
C 
B 
E 
R 
T



• Comparisons of PLMs
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Cui et al., Findings of EMNLP 2020. Revisiting Pre-trained Models for Chinese Natural Language Processing

 



• Experimental Results 

• Significant improvements on machine reading comprehension tasks


• Moderate improvements on classification tasks
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Cui et al., Findings of EMNLP 2020. Revisiting Pre-trained Models for Chinese Natural Language Processing

 



• Investigation on MLM Tasks 

• MacBERT: 80% of tokens are replaced into their similar 
words, and 10% replaced into random words.


• Random Replace: 90% of tokens are replaced into 
random words.


• Partial Mask: original BERT implementation, with 80% 
tokens replaced into [MASK] tokens, and 10% replaced 
into random words.


• All Mask: 90% tokens replaced with [MASK] tokens.
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Cui et al., Findings of EMNLP 2020. Revisiting Pre-trained Models for Chinese Natural Language Processing

 



• Open-Source Chinese PLM Series 

• BERT: BERT-wwm, BERT-wwm-ext


• XLNet: XLNet-base, XLNet-mid


• RoBERTa: RoBERTa-wwm-ext, RoBERTa-wwm-ext-large


• RBT: RBT3, RBTL3


• ELECTRA: ELECTRA-small, ELECTRA-small-ex, ELECTRA-base, ELECTRA-large


• MacBERT: MacBERT-base, MacBERT-large
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Cui et al., Findings of EMNLP 2020. Revisiting Pre-trained Models for Chinese Natural Language Processing

Our open-source PLM series achieves 5,500+ ⭐ !!!

 

https://github.com/ymcui/MacBERT


• HFL Ranks No.1 in GLUE Benchmark 

• Further pre-training on ALBERT-xxlarge with Mac objective


• Dynamic keyword matching (DKM) approach is also applied for better fine-tuning
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CLUE 
• CLUE: Chinese Language Understanding Evaluation


• A similar benchmark to GLUE


• Provide 3 categories, 9 tasks of Chinese NLU


• Comprehensive comparisons on the existing PLMs

121

Xu et al., COLING 2020. CLUE: A Chinese Language Understanding Evaluation Benchmark

https://github.com/CLUEbenchmark/CLUE


预训练语⾔模型近期研究进展 
RECENT ADVANCES IN PRE-TRAINED LANGUAGE MODELS



Recent PLMs
• Trending 

• GPT-2, GPT-3, T5 


• Distillation 

• DistilBERT, TinyBERT, MobileBERT


• TextBrewer


• Multi-lingual


• mBERT, XLM, XLM-R
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GPT-2
• GPT-2: Language Models are Unsupervised Multitask Learners 

• Language model can perform down-stream tasks in a zero-shot setting


• Capacity of the language model is essential to the success of zero-shot task transfer
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Radford et al., 2019. Language Models are Unsupervised Multitask Learners

https://github.com/openai/gpt-2


GPT-2
• Training Phase


• Almost IDENTICAL model structure GPT,


• Pre-training data: 6GB → 40GB uncompressed free text


• A few modifications


• Layer normalization is moved to the input of each sub-block


• An additional layer normalization is added after the final self-attention block


• Vocabulary is expanded to 50,257 (GPT: 40,000)


• Context size is increased to 1024 (GPT: 512)


• Inference Phase


• Adapt to each task using a free form input
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Radford et al., 2019. Language Models are Unsupervised Multitask Learners



GPT-2
• Model Sizes
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Radford et al., 2019. Language Models are Unsupervised Multitask Learners

≈BERT-base

≈GPT

≈BERT-large



GPT-2
• Experimental Results
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Radford et al., 2019. Language Models are Unsupervised Multitask Learners

Cloze-style 

Reading Comprehension



GPT-3
• GPT-3: Language Models are Few-Shot Learners 

• Almost nothing new on top of GPT-2 architecture


• Substantially BIGGER model than all previous PLMs - we need more power!
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Brown et al., 2020. Language Models are Few-Shot Learners

https://github.com/openai/gpt-3


GPT-3
• Model 

• Similar to GPT-2 with alternating dense and locally banded sparse attention patterns 
in the transformer layer
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Brown et al., 2020. Language Models are Few-Shot Learners

💡
GPT-2 has 1.5B 

params, takes about 
6G disk space

>700G disk space



GPT-3
• Settings 

• Traditional scheme: fine-tuning


• In GPT-3: zero-shot, one-shot, few-shot
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Brown et al., 2020. Language Models are Few-Shot Learners



GPT-3
• Results 

• Remarkable performance on zero-shot, one-shot, few-shot settings
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T5
• T5: Text-to-Text Transfer Transformer 

• Propose an encoder-decoder scheme for all NLP tasks


• Comprehensive model design comparisons


• Pre-training data size: C4 (~750G)
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Raffel et al., arXiv 2019. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

https://github.com/google-research/text-to-text-transfer-transformer


T5
• Overall Architecture 

• Transformer-based Encoder-Decoder architecture


• Taking every NLP task as a “text-to-text” problem
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Raffel et al., arXiv 2019. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
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T5
• Training Stage 

• A span-corruption unsupervised training objective


• Randomly mask 15% tokens in the input sequence
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Raffel et al., arXiv 2019. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer



T5
• Fine-tuning Phase 

• Universal input-output scheme for all downstream tasks
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Raffel et al., arXiv 2019. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Machine Translation

Classification

Regression

Summarization



T5
• Experimental Results 

• Small: 60M, base: 220M, large: 770M
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Distillation
• Towards More Compact and Efficient PLMs 

• PLMs are way bigger than traditional neural network models


• Real-time application requires much quicker inference time and compact size


• Knowledge distillation is a technique of transferring knowledge from a large (teacher) 
model to a small (student) model, without significant loss in performance.
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Distillation
• DistilBERT


• A general-purpose / task-agnostic pre-trained distilled version of BERT


• 40% smaller, 60% faster, retains 97% of the language understanding capabilities
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Sanh et al., arXiv 2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter

https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English?&context=The+Amazon+rainforest+(Portuguese:+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia;+Spanish:+Selva+Amaz%C3%B3nica,+Amazon%C3%ADa+or+usually+Amazonia;+French:+For%C3%AAt+amazonienne;+Dutch:+Amazoneregenwoud),+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle,+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7,000,000+square+kilometres+(2,700,000+sq+mi),+of+which+5,500,000+square+kilometres+(2,100,000+sq+mi)+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil,+with+60%25+of+the+rainforest,+followed+by+Peru+with+13%25,+Colombia+with+10%25,+and+with+minor+amounts+in+Venezuela,+Ecuador,+Bolivia,+Guyana,+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet's+remaining+rainforests,+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world,+with+an+estimated+390+billion+individual+trees+divided+into+16,000+species


Distillation
• DistilBERT


• The student (DistilBERT, 6-layer) has the same 
general architecture


• The training objective is the linear combination of 
the following losses


• a supervised MLM loss with hard-labels given 
by the dataset


• a distillation MLM loss with soft-labels given 
by the teacher


• a cosine embedding loss which aligns the 
directions of the student and teacher hidden 
states vectors.
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Sanh et al., arXiv 2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter



Distillation
• TinyBERT


• A new distillation method (Transformer Distillation) that matches different 
representations from BERT layers


• A two-stage learning framework with performing the proposed Transformer distillation 
at both the pre-training and fine-tuning stages 


• TinyBERT achieves over 96% the performance of teacher (BERT-base) on GLUE while 
having much fewer parameters (∼13.3%) 
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Jiao et al., arXiv 2019. TinyBERT: Distilling BERT for Natural Language Understanding

https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT


Distillation
• TinyBERT


• Transformer Distillation performs the distillation on 
different representations


• Normal prediction-layer distillation


• Attention distillation and hidden states distillation


• Two-stage learning


• General (MLM) distillation: use the original BERT 
without fine-tuning as the teacher, and a large-
scale text corpus as the training data


• Task-specific Distillation: use the fine-tuned BERT 
as the teacher, re-perform the proposed distillation 
method on an augmented task-specific dataset
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Jiao et al., arXiv 2019. TinyBERT: Distilling BERT for Natural Language Understanding



Distillation
• MobileBERT


• MobileBERT is as deep as BERT-large while each layer is thinner, with re-designed 
building blocks.


• A variety of knowledge transfer strategies have been carefully investigated.


• MobileBERT is 4.3x smaller and 5.5x faster than BERT-base, while it can still achieve 
competitive results on well-known NLP benchmarks. 
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Sun et al., ACL 2020. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices

https://github.com/google-research/google-research/tree/master/mobilebert


Distillation
• MobileBERT


• Trains the teacher (IB-BERT, 24 layers) from scratch; 
Distills MobileBERT from the IB-BERT


• Objectives: Normal Distillation MLM loss + the 
following knowledge transfer objectives


• Feature map transfer: matches feature maps 
between IB-BERT and MobileBERT


• Attention Transfer: matches self-attention maps 
between IB-BERT and MobileBERT


• Training Strategies: Progressive Knowledge Transfer


• Progressively train each layer with  stages: when 
training the l-th layer, freeze the layers below.

L
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Sun et al., ACL 2020. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices

BERT IB-BERT MobileBERT



 
• TextBrewer: An Open-Source Knowledge Distillation Toolkit


• A PyTorch-based distillation toolkit for NLP


• Aims to save the effort of setting up distillation experiments
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Yang et al., ACL 2020. TextBrewer: An Open-Source Knowledge Distillation Toolkit for Natural Language Processing

• Wide-model-support: especially transformer-based models


• Flexible: includes various distillation methods and strategies 

which can be freely combined


• Easy to use: no need to modify your model code, most 

parts of your existing training scripts could be re-used


• Built for NLP: works on typical tasks like text classification, 

reading comprehension, and sequence labeling

https://github.com/airaria/TextBrewer


 
• Overall Architecture


• Configurations: define the distillation method and training process


• Distillers: conduct the actual distillation process (5 kinds of distillers)


• Utilities: useful tools such as model size analysis and simple data 
augmentation strategies


• Workflow


• preparatory work


• Train the teacher model


• Initialize the student model, dataloader, and optimizer


• Distillation with TextBrewer


• Initialize two configurations and a distiller


• Define auxiliary functions (adaptors and a callback)


• Call the train method of the distiller to start distillation
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Yang et al., ACL 2020. TextBrewer: An Open-Source Knowledge Distillation Toolkit for Natural Language Processing



 
• Setups


• Teachers: BERT-base


• Students: T6 (60%), T3 (41%), T3-small (16%), T4-tiny 
(same as TinyBERT, 13%)


• Results: Single-teacher distillation


• T6 achieves over 99% of the teachers on all tasks


• T4-tiny outperforms TinyBERT when training with the 
same amount of data


• Results: Multi-teacher distillation


• All the models (teachers and the student) are BERT-base 
structure


• Student model achieves the best performance, higher 
than the ensemble result
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Multi-lingual
• All-Language-in-One PLM 

• Most of the research focuses on English only, leading to a severe unbalance in the 
language diversity in natural language processing


• One-language-at-a-time training is computationally expensive, especially for PLM
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Multi-lingual
• Multi-lingual BERT (mBERT) 

• mBERT is the first multilingual pre-trained model, a single model trained on 104 
languages.


• mBERT has learned high-quality cross-lingual representation and shown surprisingly 
good zero-shot cross-lingual performance on several NLP tasks.
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Devlin et al., NAACL 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://github.com/google-research/bert/blob/master/multilingual.md


Multi-lingual
• XLM: Cross-lingual Language Model Pretraining


• A new unsupervised method for learning cross-lingual representations (CLM).


• A new supervised learning objective that improves cross-lingual pretraining when 
parallel data is available (TLM).


• The model (XLM) significantly improves the performance on cross-lingual 
classification, unsupervised machine translation and supervised machine translation. 
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Conneau and Lample, NeurIPS 2019. Cross-lingual Language Model Pretraining

https://github.com/facebookresearch/XLM


Multi-lingual
• XLM


• Input representation: adds language embeddings to the input


• Three language modeling objectives: MLM, CLM, TLM


• Masked Language Modeling (MLM) 


• Same as BERT's MLM


• Casual Language Modeling (CLM)


• Model the probability of a word given the history in a 
sentence


• Translation Language Modeling (TLM)


• Similar to MLM, but concatenate parallel sentences as the 
input


• Randomly mask words in both source and target sentences


• Encourages model to leverage context from the other 
language
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Conneau and Lample, NeurIPS 2019. Cross-lingual Language Model Pretraining
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Multi-lingual
• XLM-R


• Improves cross-lingual language understanding by carefully studying the effects of 
training unsupervised cross-lingual representations on a very large scale.


• XLM-R pre-trained on a text in 100 languages obtains state-of-the-art performances 
on cross-lingual classification, sequence labeling, and question answering. 
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Conneau et al., ACL 2020. Unsupervised Cross-lingual Representation Learning at Scale

https://github.com/facebookresearch/XLM


Multi-lingual
• Training with a simple objective 

• model structure is the same as RoBERTa, trained with the MLM objective.


• unlike XLM, there is no CLM, TLM, and language embeddings.


• Training with more data 

• Includes 100 languages, with a vocabulary size of 250K.


• Data used in XLM-R is several orders of magnitude larger than mBERT, in particular for low-resource languages.


• Unlike XLM model, only monolingual data is used. Parallel data is no longer required.
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Conneau et al., ACL 2020. Unsupervised Cross-lingual Representation Learning at Scale



Multi-lingual
• Experimental Results on LM-R


• Improves cross-lingual language understanding by carefully studying the effects of 
training unsupervised cross-lingual representations on a very large scale.


• XLM-R pre-trained on a text in 100 languages obtains state-of-the-art performances 
on cross-lingual classification, sequence labeling, and question answering. 
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总结 
SUMMARY



Summary
• From static to dynamic


• word2vec, GloVe → CoVe, ELMo


• From dynamic to deep dynamic

• GPT, BERT, XLNet, RoBERTa, ALBERT, ELECTRA


• Efforts in Chinese PLMs

• Chinese BERT-wwm, ERNIE, NEZHA, ZEN, MacBERT


• Trending PLMs

• GPT-2, GPT-3, T5


• Distillation / Multi-lingual
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