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 INTRODUCTION

• To comprehend human language is essential in AI

• As a typical task in cognitive intelligence, Machine Reading Comprehension 
(MRC) has attracted lots of attentions from NLP field
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 RESEARCH TRENDS

• Research trends of MRC (from 2012)

• Keywords: Reading Comprehension, Comprehension
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*Statistics are obtained from ACL Anthology
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 INTRODUCTION

• Definition of Reading Comprehension 

• Macro-view 

• To learn and do reasoning with world 
knowledge and common knowledge 
while we are growing up

• Micro-view 

• Read an article/several articles, and 
answer the questions based on it
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 INTRODUCTION

• Four key components in RC 

• →Document

• Query

• Candidates

• Answer
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*Example is chosen from the MCTest dataset (Richardson et al., 2013)
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 INTRODUCTION

• Why MRC has become enormously popular in recent years?

• Mutual effect by

• Growing interest in DL techniques

• Availability of large-scale MRC data
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 PROGRESS OF MRC DATASETS
• MCTest (Richardson et al., EMNLP2013)
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• DeepMind CNN/DailyMail (Hermann et al., NIPS2015)
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• Facebook CBT (Hill et al., ICLR2016)
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• HFL-RC: PD&CFT (Cui et al., COLING2016)
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• Stanford SQuAD (Rajpurkar et al., EMNLP2016)
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 PROGRESS OF MRC DATASETS
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 CLOZE-STYLE RC
• Definition of cloze-style RC

• Document: the same as the general RC

• Query: a sentence with a blank

• Candidate (optional): several candidates 
to fill in

• Answer: a single word that exactly match 
the query (the answer word should 
appear in the document)
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*Example is chosen from the CNN dataset (Hermann et al., 2015)



 CLOZE-STYLE RC
• CBT Dataset (Hill et al., ICLR2016)
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Step1: Choose 21 sentences

Step2: Choose first 
20 sentences as 

Context

Step3: Choose 21st 
sentence as Query

Step3: With a BLANK 

Step3: The word removed from Query 

Step4: Choose other 
9 similar words from 
Context as Candidate 



 RELATED WORKS

• Predictions on full vocabulary 

• Attentive Reader (Hermann et al., 2015)

• Stanford AR (Chen et al., 2016)

• Pointer-wise predictions (Vinyals et al., 2015) 

• Attention Sum Reader (Kadlec et al., 2016)

• Consensus Attention Reader (Cui et al., 2016)

• Gated-attention Reader (Dhingra et al., 2017)
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 ATTENTIVE READER

• Teaching Machines to Read and Comprehend (Hermann et al., NIPS2015)

• Propose attention-based neural networks for reading comprehension
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 STANFORD AR
• A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task (Chen et al., ACL2016)

• Nothing special in NN model, but provides valuable insights on the CNN/DailyMail datasets
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1) CNN/DailyMail dataset is noisy 
2) Current NN models have almost reached 

CEILING performance 
3) Requires less reasoning and inference



 ATTENTION SUM READER

• Text Understanding with the Attention Sum Reader Network (Kadlec et al., ACL2016)

• Propose to utilize and improve Pointer Network (Vinyals et al., 2015) in RC
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Sum Attention 
Mechanism



 CAS READER
• Consensus Attention-based Neural Networks for Chinese Reading Comprehension (Cui et al., 

COLING2016)

• Propose to consider different timesteps of query and generate multiple doc-level attentions
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 GATED-ATTENTION READER

• Gated-Attention Reader for Text Comprehension (Dhingra et al., ACL2017)

• Propose to use multiple hops for refining attended representations
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 AOA READER

• Attention-over-Attention Neural Networks for Reading Comprehension (Cui et al., ACL2017)

• Primarily motivated by AS Reader (Kadlec et al., 2016) and CAS Reader (Cui et al., 2016)

• Introduce matching matrix for indicating doc-query relationships

• Mutual attention: doc-to-query and query-to-doc

• Instead of using heuristics to combine individual attentions, we place another attention to 
dynamically assign weights to the individual ones 

• Some of the ideas in our work has already been adopted in the follow-up works not only in cloze-
style RC but also other types of RC (such as SQuAD).
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 AOA READER

• Model architecture at a glance
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 AOA READER

• Contextual Embedding 

• Transform document and 
query into contextual 
representations using word-
embeddings and bi-GRU units

28



 AOA READER

• Pair-wise Matching Score 

• Calculate similarity between 
each document word and 
query word

• For simplicity, we just calculate 
dot product between 
document and query word  
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 AOA READER

• Individual Attentions 

• Calculate document-
level attention with 
respect to each query 
word
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 AOA READER

• Attention-over-Attention 

• Dynamically assign weights to 
individual doc-level attentions

• Get “attended attention”
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 AOA READER

• Final Predictions 

• Adopt Pointer Network (Vinyals et 
al., 2015) for predictions

• Apply sum-attention mechanism 
(Kadlec et al., 2016) to get the final 
probability of the answer
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 AOA READER

• An intuitive example 

• Let say this is a story about `Tom bought a diamond ring for his beloved girl friend…`
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Tom loves <blank> .

Query-level  
Attention 0.5 0.3 0.15 0.05

Candidate 
Answers

Mary        = 0.6
diamond   = 0.3
beside      = 0.1

Mary        = 0.3
diamond   = 0.5
beside      = 0.2

Mary        = 0.4
diamond   = 0.4
beside      = 0.2

Mary        = 0.2
diamond   = 0.4
beside      = 0.4

Average Score  
(CAS Reader)

Mary          = (0.6+0.3+0.4+0.2) / 4 = 0.375
diamond     = (0.3+0.5+0.4+0.4) / 4 = 0.400 
beside        = (0.1+0.2+0.2+0.4) / 4 = 0.225

Weighted Score  
(AoA Reader)

Mary     = 0.6*0.5+0.3*0.3+0.4*0.15+0.2*0.05 = 0.460 
diamond   = 0.3*0.5+0.5*0.3+0.4*0.15+0.4*0.05 = 0.380
beside      = 0.1*0.5+0.2*0.3+0.2*0.15+0.4*0.05 = 0.160



 AOA READER

• N-best re-ranking strategy for cloze-
style RC 

• Mimic the process of double-checking, 
in terms of fluency, grammatical 
correctness etc.

• Main idea: Re-fill the candidate answer 
into the blank of query to form a 
complete sentence and using additional 
features to score the sentences
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Generate candidate answers 
N-best decoding

Re-fill the candidate into query

Scoring with additional features 
(such as N-gram LM)

Feature weight tuning 
KBMIRA (Cherry and Foster, 2012)

Re-scoring and Re-ranking



 AOA READER
• Single model performance 

• Significantly outperform previous works 

• Re-ranking strategy substantially improve performance

• Introducing attention-over-attention mechanism 
instead of using heuristic merging function (Cui et al., 
2016) may bring significant improvements

• Ensemble performance 

• We use greedy ensemble approach of 4 models 
trained on different random seed

• Significant improvements over state-of-the-art systems
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 TAKEAWAYS - 1
• What are the gooooooooood things in cloze-style RC? 

• Pointer Network is especially useful in this task, as the answer is assumed to be existed 
in the document, just directly PICK the right answer from document

• A simple DOT product is capable of attention calculation

• Mutual attention mechanism could bring additional information, using both doc-to-
query and query-to-doc attentions

• Re-ranking strategy with traditional N-gram LMs could substantially improve cloze-
style RC performance due to its nature
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 COMPLEX MRC
• Complex MRC (informal definition) 

• Including following types

• Span extraction from passage (phrase, sentences etc.)

• Generate answer directly

• Choose correct answer from candidate choices (A/B/C/D)

• Span extraction is the most popular type in recent studies
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 SQUAD
• SQuAD: 100,000+ Questions for Machine Comprehension of  Text (Rajpurkar et al., EMNLP2016)

• Dataset Features

• More Difficult: word-level answers → words, phrases or even sentences

• High Quality: automatically generated data → human-annotated data

• Much Bigger : 100K+ questions, bigger than previous human-annotated RC datasets
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 SQUAD
• Sample of SQuAD 

• Document: Passages from Wikipedia pages, 
segment into several small paragraphs

• Query: Human-annotated, including various 
query types (what/when/where/who/how/
why etc.)

• Answer: Continuous segments (text spans) 
in the passage, which has a larger search 
space, and much harder to answer than cloze-
style RC
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 RELATED WORKS

• A large amount of researchers are investigating SQuAD after its release. Tons of 
models are proposed.

• Representative Works 

• Match-LSTM (Wang and Jiang, 2016)

• Bi-directional Attention Flow (BiDAF) (Seo et al., 2016)

• Dynamic Coattention Network (DCN) (Xiong et al., 2017)

• r-net (Wang et al., 2017)
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 MATCH-LSTM
• Machine Comprehension using Match-LSTM and Answer Pointer (Wang and Jiang, 2016)

• Propose to use Pointer Network to directly output start and end position in document
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 BIDAF
• Bi-Directional Attention Flow for Machine Comprehension (Seo et al., 2016)

• Propose bi-directional attention, which has become a stereotype in SQuAD task
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 DCN
• Dynamic Coattention Networks for Question Answering (Xiong et al., 2016)

• Propose dynamic coattention model, iterative pointer mechanism

44



 DCN+
• DCN+: Mixed Objective and Deep Residual Coattention for Question Answering (Xiong et al., 

2017)

• Utilize deep self-attention and residual networks

• Mixed objective that combines cross entropy loss with self-critical policy learning
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 R-NET
• Gated Self-Matching Networks for Reading Comprehension and Question Answering (Wang et al., 

2017)

• Propose to use self-matching and gated attention
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 OUR WORK

• Interactive AoA Reader: an improved version of AoA Reader (Cui et al., 2017)

• We have been working on SQuAD task for months, and get on the 1st place in the late July, 2017
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*As of August 1, 2017. http://stanford-qa.com *As of November 13, 2017. http://stanford-qa.com

http://stanford-qa.com
http://stanford-qa.com


 OUR WORK

• As our work is not published, we cannot reveal the detailed architecture and algorithms

• But…we can tell you a little bit of the techniques that adopted (published techniques 
with modifications)

• Char+Word level embeddings

• Multiple hops for representation refining

• Incorporating historical attentions

• And more? Stay tuned for our papers!
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 TAKEAWAYS - 1I
• What are the gooooooooood things in these models? 

• Old things still works

• Pointer Network for directly predict start/end position in document

• Mutual attention mechanism

• What’s new?

• Word-level + Char-level embeddings

• More complex attention calculation with multiple attended representations
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 RECENT HIGHLIGHTS

• Open-Domain MRC

• Reading Wikipedia to Answer Open-Domain Questions (Chen et al., 
ACL2017) 

• More complex MRC datasets

• RACE (Lai et al., EMNLP2017), MS MARCO (Nguyen et al., 2016), 
NewsQA (Trischeler et al., 2017), TriviaQA (Joshi et al., ACL2017)

• SemEval 2018 Task11 & Task12

• Trying to use knowledge base or common sense 
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 OPEN-DOMAIN MRC
• Reading Wikipedia to Answer Open-Domain Questions (Chen et al., ACL2017) 

• Open-Domain MRC = Document Retriever + MRC
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 DATASET COMPARISON

• Comparisons on recent MRC datasets 
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Dataset Size (# Query) Question Source Answer Type Difficulty

SQuAD ~100K Crowd-sourced Passage span Medium

RACE ~97K Exams in China Choice Selection (from 
A/B/C/D) High

MS MARCO ~100K User logs Human generated High

NewsQA ~120K Crowd-sourced Passage span Relatively High

TriviaQA ~650K 
(~95K unique)

Auto-gathered / 
Human-annotated Passage span Relatively High



 RACE 
• RACE: Large-scale ReAding 

Comprehension Dataset From 
Examinations (Lai et al., EMNLP2017)

• Features

• Needs more comprehensive 
understanding of context

• Answer is no longer a span in document

• Misleading choices among candidates

• SOTA model in SQuAD failed to give 
excellent performance (70%+ → 40%)
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 SEMEVAL 2018 TASK 11&12
• SemEval 2018 Task 11: Machine 

Comprehension using Common Sense

• SemEval 2018 Task 12: Argument 
Reasoning Comprehension Task

• What’s new

• Trying to use common sense to 
solve MRC

• Discriminate different choice 
according to the context
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 MRC TRENDS

• MRC Trends

• Automatically generated data → Human-annotated data

• Single document → Multiple documents

• Single sentence inference → Multiple sentences inference

• Answer retrieval → Summarization/Reasoning/Inference

• Model aspects: all in one is not all we need
56
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 CONCLUSION

• Current MRC ≈ More Complex QA

• Does current MRC do reasoning?

• Maybe not, but not totally

• Machine Reading Comprehension is a long-term studies that requires 
continuous efforts

• “All roads lead to Rome”——In the DL era, every model deserves a chance 
to win the game (if you use it in correct way and keep trial-and -error process)
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