

TripleNet:Triple Attention Network for Multi-Turn Response Selection in Retrieval-based Chatbots

WENTAO MA YIMING CUI NAN SHAO SU HE WEI-NAN ZHANG TING LIU SHIJIN WANG GUOPING HU

CoNLL 2019

State Key Laboratory of Cognitive Intelligence, iFLYTEK Research, Research Center for Social Computing and Information Retrieval (SCIR), iFLYTEK AI Research (Hebei)

Background

Background

Multi-turn Response Selection

Multi-view (Zhou et al., 2016)

SMN(Wu et al., 2017)

DAM(Zhou et al., 2018)

DAM(Zhou et al., 2018)

Build the representation and matching in multi-level Treat all the utterances include query in the same way

Does all the utterances (include query) in the context play the same role for multi-turn response selection?

I downloaded angry ip scanner and now it doesn't work and I can't uninstall it

You install it via package or via some binary installer

I installed from ubuntu soft center

Hm I do n't know what package it is but it should let you remove it the same way

Ah makes sense then ... hm was it a deb file

Candidate I: I think it was another format mayge sth starting with r

Candidate2: Thanks I appreciate it try sudo apt-get install

The importance of different utterances depends on query

So we need to model the task by the triple <C,Q,R> instead of <C,R>

How to model the relationships within the triple <C,Q,R>?

How to model the relationships within the triple <C,Q,R>?

$$C_1, Q_1 = BAF(C, Q)$$

$$C_2, B_1 = BAF(C, Q)$$

$$C_2, R_1 = BAF(C, Q)$$

$$Q_2, R_2 = BAF(C, R)$$

$$C' = BN(C_1 + C_2)$$

$$Q' = BN(Q_1 + Q_2)$$

$$R' = BN(R_1 + R_2)$$

Triple Attention

Symmetrical Triple

Unchanged dimension

How to model the relationships within the triple <C,Q,R>?

 $egin{aligned} M_{pq} &= P^T tanh(W_3Q) \ Att_{pq} &= softmax(M_{pq}) \ Att_{qp} &= softmax(M_{pq}^T) \ P' &= P - ilde{Q}; \;\; ilde{Q} &= QAtt_{pq}; \ Q' &= Q - ilde{P}; \;\; ilde{P} &= PAtt_{qp}; \end{aligned}$

• Hierarchical representation

• Char-level:

$$ch_{j,t} = tanh(W_1^j * x_{t:t+s_j-1} + b_1^j)$$

 $ch_j = MaxPooling_{t=0}^L[ch_{j,t}]$

Word-level:

$$e(x) = [W_e \cdot x; ch(x); MF]$$

$$\overleftarrow{h(x)} = \overleftarrow{\mathsf{LSTM}}(e(x))$$
 $\overrightarrow{h(x)} = \overrightarrow{\mathsf{LSTM}}(e(x))$
 $h(x) = [\overleftarrow{h(x)}; \overrightarrow{h(x)}]$

Word embedding

Char embedding

- Hierarchical representation
 - Utterance-level:

$$lpha_i^k = softmax(W_3tanh(W_2h_{u_k}(i)^T))$$
 $u_k = \sum_{i=1}^m h_{u_k}^i lpha_i^k$

Context-level:

$$c_k = \text{Bi-LSTM}([u_k]_{k=1}^n)$$

Triple Attention

Context

Level

• Triple matching

$$egin{aligned} ilde{M}_{rc}^{1}(i,k,j) &= cosine(ch_{r}'(i),ch_{u_{k}}'(j)) \ M_{rc}^{1}(i,k) &= \max_{0 < j < m} ilde{M}_{1}(i,j,k) \ M_{rq}^{1}(i,j) &= cosine(ch_{r}'(i),ch_{q}'(j)) \ M_{1} &= [M_{rc}^{1}(i,k);M_{rq}^{1}(i,j)] \end{aligned}$$

Fusion and prediction

$$M = [M_1; M_2; M_3; M_4]$$
 $ilde{m} = MaxPooling_{i=0}^{n+m} [ext{Bi-LSTM}(m_i)]$
 $v = MaxPooling_{j=0}^{m} [ext{Bi-LSTM}(ilde{m}_j)]$
 $g(C, Q, R) = sigmoid(W_4 \cdot v + b_4)$

Experiment

- Datasets
 - Ubuntu Dialogue Corpus (lowe et al., 2015)
 - Extract from Ubuntu chat logs, technical support for Ubuntu-related problem
 - Train/Dev/Test: 1/0.5/0.5 million session-response pairs
 - Evaluation Metrics: recall at position k in n candidates(Rn@K)
 - Douban Conversation Corpus (Wu et at., 2017)
 - Shares similar format with Ubuntu corpus but is open-domain in Chinese
 - Train/Dev/Test: Imillion/0.5 million/10000 session-response pairs
 - Evaluation Metrics: mean average position (MAP), mean reciprocal recall (MRR) , Precision at position I (P@I), and Rn@K

Experiment

Overall result

		Ubuntu Dialogue Corpus				Douban Conversation Corpus					
		$R_2@1$	$R_{10}@1$	R ₁₀ @2	$R_{10}@5$	MAP	MRR	P@1	$R_{10}@1$	R_{10} @2	$R_{10}@5$
No-attention	DualEncoder	90.1	63.8	78.4	94.9	48.5	52.7	32.0	18.7	34.3	72.0
	MV-LSTM	90.6	65.3	80.4	94.6	49.8	53.8	34.8	20.2	35.1	71.6
	Match-LSTM	90.4	65.3	80.4	94.6	49.8	53.8	34.8	20.2	34.8	71.0
	DL2R	89.9	62.6	78.3	94.4	48.8	52.7	33.0	19.3	34.2	70.5
	Multi-View	90.8	66.2	80.1	95.1	50.5	54.3	34.2	20.2	35.0	72.9
	SMN	92.6	72.6	84.7	96.1	52.9	56.9	39.7	23.3	39.6	72.4
Attention-based	RNN-CNN	91.1	67.2	80.9	95.6	_	-	-	-	-	_
	DUA	-	75.2	86.8	96.2	55.1	59.9	42.1	24.3	<i>42.1</i>	<i>78.0</i>
	DAM	93.8	76.7	87.4	96.9	55.0	60.1	42.7	25.4	41.0	75.7
Our model	TripleNet	94.3	79.0	88.5	97.0	56.4	61.8	44.7	26.8	42.6	77.8
	TripleNet _{elmo}	95.1	80.5	89.7	97.6	60.9	65.0	47.0	27.8	48.7	81.4
	$TripleNet_{ensemble}$	95.6	82.1	90.9	98.0	63.2	67.8	51.5	31.3	49.4	83.2

Experiment

- Model Ablation
 - -TAM: remove triple attention and matching parts;
 - -Atri: remove triple attention
 - -Query: remove query-related parts
 - A: remove attention-related parts
 - -M: remove matching-related pats
 - -char: remove char-level calculation

	R ₂ @1	R ₁₀ @1	R ₁₀ @2	R ₁₀ @5
TripleNet	94.3	79.0	88.5	97.0
-TAM	93.5	76.6	86.8	96.6
$-A_{tri}$	93.8	77.6	87.6	96.9
-Query	93.8	77.4	87.3	96.6
$-A_{CR}$	94.1	78.4	87.9	97.0
$-{ m A}_{QR}$	94.1	78.5	88.1	97.0
$-A_{CQ}$	94.3	78.7	88.3	97.0
$-{ m M}_{CR}$	93.7	76.9	87.0	96.7
$\text{-}\mathbf{M}_{QR}$	94.4	78.5	88.1	97.1
-char	94.1	78.3	88.0	97.1
-word	94.3	78.5	88.2	97.0
-utterance	94.1	78.6	88.1	97.1
-context	94.0	78.4	88.0	97.0

Analysis

Utterance A: I downloaded angry ip scanner and now it doesn't word and I can't uninstall it

Utterance₂ B: you install it via package or via some binary installer

Utterance A: I installed from ubuntu soft center

Utterance B: hm I do n't know what package it is but it should let you remove it in same way

Query(U₅) A: ah makes sense then ... hm was it a deb file

Response B: I think it was another format mayge sth starting with r

Discussion

- Importance of different utterance
 - Model: TripleNet-Query, remove query-related parts
 - We remove one of the utterance in context both in training and evaluation proces
 - Query: the 12th utterance, which is the last utterance in context

Summary

- We use a novel triple attention mechanism to model the relationships within <C,Q,R> instead of <C,R>;
- We propose a hierarchical representation module to fully model the conversation from char to context level;
- The experimental result on Ubuntu and Douban corpus show that TripleNet significantly outperform the state-of-art result.

What can you take away

- If you are interested in the retrieval-based chatbots, you can try to use the TripleNet to select the response in multi-turn conversation;
- Else if you are interested in some tasks which have three elements, you can try to use the triple attention to model the relationships within the triple;
- Else if you need to deal with Chinese NLP task, you can use the ELMo of Chinese version pretrained by Douban Conversation Corpus in tensorflow.
- Source code: https://github.com/wtma/TripleNet

Thank you & Question

Name: Ma Wentao

Email: wtma@iflytek.com