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INTRODUCTION

• Machine Reading Comprehension (MRC) is to read and comprehend a given article and answer the 
questions based on it, which has become enormously popular in recent few years.

• Type of MRC

• Cloze-style: CNN / Daily Mail [Hermann et al., 2015], CBT [Hill et al., 2015]

• Span-extraction: SQuAD [Rajpurkar et al., 2016]

• Choice selection: MCTest [Richardson et al., 2013], RACE [Lai et al., 2017]

• Conversational MRC: CoQA [Reddy et al., 2018], QuAC [Choi et al., 2018]

• In this paper, we focus on solving the RC problem with multiple-choice questions
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INTRODUCTION

• RC with multiple-choice question

• Document

• Pre-requisites for answering the questions

• Question

• Candidates

• Answer

Document: 
James the Turtle was always getting in trouble. Sometimes he’d 
reach into the freezer and empty out all the food. Other 
times he’d sled on the deck and get a splinter. His aunt Jane 
tried as hard as she could to keep him out of trouble, but he 
was sneaky and got in to lots of trouble behind her back.
One day, James thought he would go into town and see what 
kind of trouble he could get into. He went to the grocery 
store and pulled all the pudding off the shelves and ate two 
jars. Then he walked to the fast food restaurant and ordered 
15 bags of fries. He didn’t pay, and instead headed home.
His aunt was waiting for him in his room. She told James that 
she loved him, but he would have to start acting like a well-
behaved turtle.
After about a month, and after getting into lots of trouble, 
James finally made up his mind to be a better turtle.

Question: What is the name of the trouble making turtle?

A) Fries
B) Pudding
C) James
D) Jane

Answer: C) James
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CSA MODEL

• Contributions 

• Focus on modeling different semantic aspects of candidate answers

• Propose Convolutional Spatial Attention (CSA) to simultaneously 
extract the attentions between various representations

• Experimental results on RACE and SemEval 2018 Task 11 show that 
the proposed model achieves state-of-the-art performance.
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CSA MODEL

• Formal Definition of the Task 

• Inputs: Document, Question, Candidate

• Output: Candidate score of being the answer

• Basic Components 

• Embedding Layer

• LSTM Layer

• Enriched Representation Layer

• Convolutional Spatial Attention Layer

• Answer Layer
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• Embedding Layer 

• GloVe Word Embedding [Pennington et al., 2013]

• ELMo [Peters et al., 2018]

• POS-tag Embedding

• Exact Word Matching 

• Fuzzy Word Matching

• Concatenate all the features above

CSA MODEL
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• LSTM Layer 

• Apply highway layer to better mix various 
types of embeddings

• Place an ordinary Bi-LSTM layer after 
embedding to obtain contextual 
representation

•

CSA MODEL
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• Enriched Representation Layer 

• Using ‘enriched representation algorithm’ to 
get various attention-guided representations.

• RCQ: question-aware candidate representation

• RCP: passage-aware candidate representation

• RQP: passage-aware question representation

• RQQ: self-attended question representation

CSA MODEL
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• Algorithm for Enriched 
Representation 

• Two Key Points

• Adopt symmetric attention mechanism 
[Huang et al., 2017]

• Apply element-wise weight to the 
attention matrix

CSA MODEL
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• Convolutional Spatial Attention Layer 

• Candidate information is important

• We calculate dot attentions between three 
candidate representations and two question 
representations

• Concatenate 2*3=6 attention matrices, forming 
an attention cuboid M with shape [6, 
candidate_len, question_len]

CSA MODEL
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• Convolutional Spatial Attention Layer 

• The resulting matching cuboid M can be seen as a 2D-image with 6-channels

• We use Convolution-MaxPooling operation to dynamically extract high-level features 
with kernel size 5, 10, 15

CSA MODEL
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• Answer Layer 

• Concatenate all three feature vectors

• Pass through a fully-connected layer to 
get a scalar score

• Prediction: choose the candidate that has 
the largest score as the answer

CSA MODEL
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EXPERIMENTS

• Dataset 

• RACE: English examinations of Chinese middle and high school students. (4 candidate selections)

• SemEval 2018 Task 11:  Machine Comprehension using Commonsense Knowledge (2 candidate selections)

• Hyper-parameters 

• Passage/Question/Candidate max length: 300 / 20 / 10

• Word Embedding: 200-dim

• Bi-LSTM hidden size: 250-dim

• ELMo: 1024-dim

• Implementation: Keras + TensorFlow
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EXPERIMENTS

• Results on RACE 

• Shows state-of-the-art 
performance, especially on RACE-
H (high school)

• Incorporating ELMo yields 
another significant improvements
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EXPERIMENTS

• Results on SemEval 2018 

• Baselines are the top two teams in 
SemEval 2018 Task 11. 

• CSA model shows marginal but 
consistent improvements on single/
ensemble settings.

• With the help of ELMo, there is another 
boost in performance.
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ABLATION STUDY

• Ablation Results on RACE 

• w/o attention weight: do not apply element-
wise weight on attention

• w/o enriched repr: only use LSTM outputs

• w/o CSA: using two fully connected layer to 
achieve dimensionality reduction of the 3D-
attention 

• Importance: CSA > enriched repr > att weight
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ANALYSIS

• Quantitative Analysis on Different Type of 
Questions (on RACE data) 

• [+] CSA model is good at handling ‘how’ and ‘why’ 
questions, which needs comprehensive reasoning 
on the document

• [-] On the contrary, CSA model shows inferior 
performance on ‘who’, ‘when’, ‘where’ questions

• Further efforts should be made on balancing the 
word-level attention and highly abstracted attention. 
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CONCLUSIONS & FUTURE WORK

• Conclusion 

• Propose Convolutional Spatial Attention model for RC with multiple-choice questions

• The proposed model done well on hard problems types, such as ‘how’ and ‘why’

• Experimental results show significant improvements on RACE and SemEval 2018 datasets

• Future Work 

• Integrate CSA model into BERT

• Further exploiting the relations between the document, question, and candidates
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