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SUMMARY

The attentionmechanism plays an important role in themachine reading compre-
hension (MRC) model. Here, we describe a pipeline for building an MRC model
with a pretrained language model and visualizing the effect of each attention
zone in different layers, which can indicate the explainability of the model.
With the presented protocol and accompanying code, researchers can easily
visualize the relevance of each attention zone in the MRC model. This approach
can be generalized to other pretrained language models.
For complete details on the use and execution of this protocol, please refer to Cui
et al. (2022).

BEFORE YOU BEGIN

One of the important tasks in artificial intelligence (AI) is to read and comprehend human language.

Machine reading comprehension (MRC) is a task to achieve such goals, requiring the machine to

read a passage and answer the question. With the development of deep learning techniques, we

have seen rapid progress in building effective machine reading comprehension systems. After the

emergence of the pre-trained languagemodel (PLM), such as BERT (Devlin et al., 2019), which learns

text semantics from large-scale text corpora, some of theMRC systems can achieve human-level per-

formance in several MRC benchmarks.

However, a drawback of the deep learning approach is that it is difficult to explain its internal mech-

anism, raising concerns about building trustful and reliable AI systems. Regarding the explainability

of MRC systems, we wonder how these models comprehend human language and answer the ques-

tions. An important component in theMRC system is the attention-based approach (Bahdanau et al.,

2015), which explicitly assigns the ‘‘important score’’ for each input token. For the MRC system built

on PLM, the core component is themulti-head self-attentionmechanism (Vaswani et al., 2017), which

increases accuracy more than vanilla attention. However, whether all attention values have signifi-

cant impacts on the final system performance is uncertain.

In this context, we propose to visualize the attention by using a multilingual and multi-aspect way to

comprehensively understand whether these attentions can be explainable (Cui et al., 2022). Instead

of analyzing the attention matrix as a whole, we decompose the attention matrix into four different

attention zones to explicitly analyze their behaviors. This protocol illustrates the main approach that

was used in our previous study. It demonstrates a step-by-step method of building an MRC system,

collecting data points, and visualizing the attention zones. This helps us better understand which

part of attention zones is important for language comprehension.
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We describe the preliminary works before we perform actual experiments and visualization. These

include hardware and system requirements and package installation procedures.

Hardware and system

Timing: 2 min

The presented protocol is mainly developed under a computer server with the Linux operation sys-

tem (Debian GNU/Linux 9). The server is equipped with an Intel(R) Xeon(R) CPU @ 2.80 GHz and has

16G systemmemory, which is operated by Google Compute Engine. The primary computing device

for the training model is a cloud TPU v2-8 with 64G high-band memory (HBM). However, the pre-

sented protocol may also be applicable to a wide range of other Linux distributions, CPUs, and

GPUs.

To start with our experiment, we need to create a TPU with the following command.

This command will create a TPU (v2-8) named ‘‘t2-1’’ in the ‘‘us-central1-f’’ zone, equipped with

TensorFlow 1.15.3. Please keep these in mind, as we will use this meta-data for configuring our

training script.

CRITICAL: To use a TPU, the server should be operated by Google Compute Engine. It is

not possible to create TPU with other types of servers. However, there are no such restric-

tions if you are using GPU or CPU for training the model and can simply ignore the config-

urations related to TPU.

Note: We understand that some users may use macOS or Windows operating system (OS)

with CPU or GPU for conducting this protocol. To help these users, we also provide several

hints (non-exhaustive) on how to use our protocol under these systems. Please see trouble-

shooting 1 for more information.

Package installation

Timing: 5 min

Before starting the experiment, it is necessary to install the Python dependencies. Our experiments

are carried out under the Python 3.7.3 environment, but it is flexible to use other versions of Python

unless it is under version 3.X and compatible with the following python dependencies. Note that it is

recommended to use the ‘‘pip’’ command to automatically install the packages recursively. To train a

machine reading comprehensionmodel, we need to install TensorFlow (Abadi et al., 2016). The visu-

alization requires matplotlib (Hunter, 2007) and seaborn (Waskom, 2021) libraries. Please see the so-

lutions in troubleshooting 2 when the installation fails.

> ctpu up –tpu-only –zone us-central1-f –name t2-1 –tf-version 1.15.3 –tpu-size v2-8

> pip install tensorflow==1.15.3

> pip install matplotlib

> pip install seaborn
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KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

Data and code preparation

Timing: 30 min

In this protocol, we use the well-known machine reading comprehension (MRC) dataset, SQuAD

(Rajpurkar et al., 2016), and English BERT (Devlin et al., 2019) (base-cased version) pre-trained lan-

guage model to train an MRC system.

1. Download source codes.

a. The source codes can be downloaded by the following command.

b. Navigate into the downloaded folder.

2. Download SQuAD Data.

a. Download training data.

b. Download development data.

c. Move the training and development files into a new folder.

3. Download the BERT-base-cased pre-trained language model.

a. The model can be downloaded by the following command. Note that the model requires

approximately 400M disk space, so please be patient to wait until it finishes.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

SQuAD Training Set (Rajpurkar et al., 2016) https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json

SQuAD Dev Set (Rajpurkar et al., 2016) https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json

Software and algorithms

Python Python Software Foundation https://www.python.org

TensorFlow (Abadi et al., 2016) https://tensorflow.org

matplotlib (Hunter, 2007) https://matplotlib.org

seaborn (Waskom, 2021) https://seaborn.pydata.org

MRC Model Analysis (Cui et al., 2022) GitHub: https://github.com/ymcui/mrc-model-analysis
Zenodo: https://doi.org/10.5281/zenodo.6522993

Other

English BERT-base-cased (Devlin et al., 2019) https://storage.googleapis.com/bert_models/2018_10_18/
cased_L-12_H-768_A-12.zip

> git clone https://github.com/ymcui/mrc-model-analysis

> cd mrc-model-analysis

> wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json

> wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json

> mkdir squad

> mv train-v1.1.json dev-v1.1.json squad

> wget https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
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b. After downloading the model, you should unzip the file by the following command.

c. The newly created folder contains the following files, where the files with the prefix ‘‘bert_mo-

del’’ are the model files, ‘‘vocab.txt’’ is the vocabulary, and ‘‘bert_config.json’’ is the configu-

ration file.

d. Transfer model files to a Google Cloud Storage bucket (path start with ‘‘gs://’’). In this proto-

col, we use ‘‘gs://temp-bucket’’ for illustration. Note that using the Google Cloud Storage

bucket is mandatory for TPU computing. If you are using CPU/GPU, this step can be omitted.

Note: Although we use an English dataset and pre-trained language model (PLM) to illustrate

the protocol, it is also applicable to other datasets and PLMs, such as CMRC 2018 (Cui et al.,

2019) with Chinese BERT (Devlin et al., 2019), as long as they share the same dataset and PLM

structure.

Training an English MRC system

Timing: 30 min

In this step, we will train a typical English machine reading comprehension system by using SQuAD

dataset and pre-trained BERTmodel. After the training is complete, we will use the official evaluation

script to obtain the system’s performance on how well it solves the natural questions.

4. Check the training script and fill in with proper values.

a. Open the training script.

b. The training script contains the following variables and arguments.

> unzip cased_L-12_H-768_A-12.zip

cased_L-12_H-768_A-12/

|- bert_model.ckpt.meta

|- bert_model.ckpt.index

|- bert_model.ckpt.data-00000-of-00001

|- vocab.txt

|- bert_config.json

> gsutil -m cp cased_L-12_H-768_A-12/* gs://temp-bucket/bert

> vim train_squad.sh

GS_BUCKET=gs://your-bucket

TPU_NAME=your-tpu-name

TPU_ZONE=your-tpu-zone

MODEL_OUTPUT_DIR=$GS_BUCKET/path-to-output-dir

python -u run_squad.py \

–vocab_file=$GS_BUCKET/bert/cased_L-12_H-768_A-12/vocab.txt \

–bert_config_file=$GS_BUCKET/bert/cased_L-12_H-768_A-12/bert_config.json \

ll
OPEN ACCESS

4 STAR Protocols 3, 101481, September 16, 2022

Protocol



c. Fill the variables with proper values.

i. $GS_BUCKET: This is the path for Google Cloud Storage. As we indicated in the previous

section, we use ‘‘gs://temp-bucket’’ here.

ii. $TPU_NAME: This is the name of TPU, which was created by using ‘‘ctpu’’ or ‘‘gcloud

compute’’ commands. We use ‘‘t2-1’’ here.

iii. $TPU_ZONE: This is the zone of TPU, which was created by using ‘‘ctpu’’ or ‘‘gcloud

compute’’ commands. We use ‘‘us-central1-f’’ here.

iv. $MODEL_OUTPUT_DIR: This is the location where we wish to save our model files. We use

‘‘squad-model’’ here.

v. Other parameters are set with default values, and there is no need to change them at this

time.

d. Save the changes and exit by pressing ESC and typing the following.

5. Train an English MRC system by using the preset training script.

a. Type the following command to allow the model training to be executed in the background

and save the log file into ‘‘train.log’’.

b. The training script will automatically process the data, pre-train the model and perform task

fine-tuning. The whole process takes approximately 30 min. The training may unusually fail

due to the TPU issue. Please see troubleshooting 3 for further illustration.

6. Evaluate the system performance with the official script.

–init_checkpoint=$GS_BUCKET/bert/cased_L-12_H-768_A-12/bert_model.ckpt \

–do_train=True \

–train_file=./squad/train-v1.1.json \

–do_predict=True \

–predict_file=./squad/dev-v1.1.json \

–train_batch_size=64 \

–predict_batch_size=32 \

–num_train_epochs=3.0 \

–max_seq_length=512 \

–doc_stride=128 \

–learning_rate=3e-5 \

–version_2_with_negative=False \

–output_dir=$MODEL_OUTPUT_DIR \

–do_lower_case=False \

–use_tpu=True \

–tpu_name=$TPU_NAME \

–tpu_zone=$TPU_ZONE

> :wq

> nohup nice bash run.squad.sh &> train.log &
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a. Retrieve the prediction file of the development set from the storage bucket to the current

folder.

b. Type the following command to obtain the performance of the MRC system.

c. After running the evaluation script, the performance results will be shown. We can see that the

exact match (EM) score is 80.567, and the F1 score is 88.117.

Note: As the main goal of our previous work (Cui et al., 2022) was to provide robust and

comprehensive analyses of machine reading comprehension models, we carried out each

experiment five times with different random seeds, and their average scores were used. How-

ever, to minimize the training time, we only train one model in this protocol, and it can be

easily generalized to multiple runs as well by running steps 1–3 multiple times. Additionally,

please note that TensorFlow with GPU or TPU suffers from the indeterministic issue, even with

a fixed random seed. Please see troubleshooting 4 for further illustration.

Collecting data points

Timing: 2 h

In this step, we will collect the data points for visualizations. We will mask each attention zone (4

zones and masking all, resulting in 5 in total) in each transformer layer (12 in total) and obtain their

prediction files (5312=60 in total).

7. Decode SQuAD development set multiple times to obtain the prediction files when disabling

each attention zone in the different layers.

a. Open the decoding script.

b. The decoding script is similar to the training script, with two additional arguments, ‘‘–mas-

k_layer’’ and ‘‘–mask_zone’’ specified. ‘‘–mask_layer’’ indicates the layer to be masked, where

the index ranges from 0 to 11 (12 layers in total). If ‘‘None’’ is set, it means that all layers will be

masked. ‘‘–mask_zone’’ indicates the attention zone to be masked, where the valid values are

‘‘q2’’, ‘‘q2p’’, ‘‘p2q’’, ‘‘p2’’, and ‘‘all’’. The final decoding script is as follows.

> gsutil cp gs://temp-bucket/squad-model/predictions.json.

> python eval_squad.py squad/dev-v1.1.json predictions.json

{"exact": 80.56764427625355, "f1": 88.11721947565059, "total": 10570, "HasAns_exact":

80.56764427625355, "HasAns_f1": 88.11721947565059, "HasAns_total": 10570}

> vim decode_squad.sh

GS_BUCKET=gs://your-bucket

TPU_NAME=your-tpu-name

TPU_ZONE=your-tpu-zone

MODEL_OUTPUT_DIR=$GS_BUCKET/path-to-output-dir

for idx in {0..11};

do

python -u run_squad.py \
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c. By changing the values in ‘‘–mask_zone’’, we will obtain all prediction files (60 in total).

d. The prediction files will be saved in the ‘‘output_dir’’. The name will look like ‘‘prediction-

s_layer0_q2.json’’, indicating its layer number and masked attention zone.

8. Collect the prediction files and evaluate their performances.

a. Copy the prediction files from the storage bucket to the local file system.

b. We get the performances in each prediction file and write them into a result file (results.csv).

Make sure the prediction files are in the ‘‘prediction’’ folder as created in the previous step. In

this protocol, we use the exact match (EM) score as the source of data points, while we can also

use the F1 score for visualization, which can be simply changed by passing an additional argu-

ment ‘‘–use-f1’’ to the ‘‘get_results.py’’ script.

c. The following is a snippet of the result file (results.csv), where each row contains the result of

each masked attention zone. For example, the third line represents the results in layer 2,

yielding 80.028, 80.114, 80.36, 80.388, and 76.424 in all, Q2, Q2P, P2Q, and P2 zones, respec-

tively.

–vocab_file=$GS_BUCKET/bert/cased_L-12_H-768_A-12/vocab.txt \

–bert_config_file=$GS_BUCKET/bert/cased_L-12_H-768_A-12/bert_config.json \

–init_checkpoint=$GS_BUCKET/bert/cased_L-12_H-768_A-12/bert_model.ckpt \

–do_train=False \

–do_predict=True \

–predict_file=./squad/dev-v1.1.json \

–predict_batch_size=32 \

–max_seq_length=512 \

–doc_stride=128 \

–mask_layer=$idx \

–mask_zone="q2" \

–output_dir=$MODEL_OUTPUT_DIR \

–do_lower_case=False \

–use_tpu=True \

–tpu_name=$TPU_NAME \

–tpu_zone=$TPU_ZONE

done

> mkdir prediction && cd prediction

> gsutil cp gs://temp-bucket/squad-model/predictions_layers*.json .

> python get_results.py prediction results.csv

layer,all,q2,q2p,p2q,p2

1,78.344,80.539,80.482,79.991,66.982

2,80.028,80.114,80.36,80.388,76.424

3,79.688,80.227,80.293,79.792,78.666

......
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Note: The decoding time can be saved significantly by using multiple computing devices. For

example, one can simultaneously decode each attention zone in step 4.

Note: The layer index starts from 0 in the pre-trained language model, indicating the first

transformer layer. In this protocol, we directly use ‘‘layer 1’’ to indicate the first layer to avoid

confusion.

Visualizing effect of each attention zone

Timing: 5 min

In this step, we will use the result file to visualize the effect when a specific attention zone is disabled.

9. Decode SQuAD development set multiple times to get the prediction files when disabling each

attention zone in the different layers.

a. Run the visualization script by passing the result file as the first argument, the baseline perfor-

mance as the second argument, and the name of the output figure as the third argument. In

this example, the result file is ‘‘results.csv’’, the baseline performance (EM) is ‘‘80.567’’ (refer to

step 6.c), and the output figure name is ‘‘squad.pdf’’.

b. The visualization figure will be saved in the ‘‘squad.pdf’’ file, which is shown as follows.

EXPECTED OUTCOMES

After a series of preceding steps, we can get the visualization result of each attention zone in the

different layers, which is depicted in Figure 1A. We also include the original figure presented in

our previous study (Cui et al., 2022) for comparison.

We can see that the two figures look similar to each other. The figure presented in this protocol (Fig-

ure 1A) is based on a single-run experiment, while our previous study used a five-run average as the

source of visualization (Figure 1B). Overall, the P2Q and P2 zones yield darker colors, indicating that

removing the attention in these zones will result in worse system performance than Q2 and Q2P

zones.

A major difference between the two figures is that the color of Figure 1A is relatively lighter than that

of Figure 1B. This will result in some analytical conclusions presented in our previous study not being

drawn from Figure 1A. For example, in the 12th layer of Figure 1A, Q2, Q2P, and P2Q show light red

colors in Figure 1B, indicating that removing these attention zones will improve the system perfor-

mance, which was verified by our previous work. However, we cannot observe this phenomenon in

Figure 1A, yielding all white colors in these attention zones. This demonstrates that it is essential to

carry out multiple experiments for reliable analytical studies. Further quantification and statistical

analysis are shown in the next section.

One may wonder whether visualizing F1 scores will result in a completely different attention pattern.

In this context, we also visualize the attention zones by using F1 scores instead of EM scores. This can

be achieved by passing an additional argument ‘‘–use-f1’’ to the ‘‘get_results.py’’ script in step 8.b

and changing the baseline score to ‘‘88.117’’ (refer to step 6.a) in step 9.a. The visualization is shown

in Figure 2. We can see that Figure 2 has almost the same attention distribution as in Figure 1A, and

thus, we only used EM scores for visualization for simplicity.

> python visualize_att_zone.py results.csv 80.567 squad.pdf
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QUANTIFICATION AND STATISTICAL ANALYSIS

In this protocol, we perform a single experiment to visualize the effect of each attention zone in

different transformer layers. However, in our previous study (Cui et al., 2022), to ensure that the an-

alyses were more robust and reliable, each experiment was performed five times, and their average

scores were used for visualization and analyses. To explicitly understand the underlying reasons

behind multiple runs, we show the original raw results as follows. This also helps in reproducing

and comparing our results.

The single-run experimental result is shown in Table 1, which reflects the content of ‘‘results.csv’’ in

step 8.c. These results were used for visualization, as shown in Figure 1A. The original results of Fig-

ure 1B are shown in Table 2, which is the exact figure that was shown in our previous study (Cui et al.,

2022), where each experiment was performed five times and their average scores were reported.We

also calculate the standard deviation between Table 1 and (Cui et al., 2022) for each attention zone in

the last row of Table 2. The standard deviation for a specific attention zone is calculated by

Figure 1. Visualization of attention zones in different layers using EM scores

(A) Visualization using the results in this protocol.

(B) Visualization presented in our previous study (Cui et al., 2022).

Figure 2. Visualization of attention zones in different layers

using F1 scores
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calculating the difference between Table 1 and (Cui et al., 2022) in a single layer, and then we calcu-

late the standard deviation of these differences in all layers.

Through the comparisons between Tables 1 and 2, we can see that the standard deviation varies

greatly among different attention zones. The less important attention zones Q2 and Q2P yield minor

variance, while the P2Q and P2 zones yield larger variance, resulting in the standard deviations of

1.405 and 0.815, respectively. This is why multiple-run experiments are needed, especially for

analytical studies, where the majority of the analyses stem from these results.

LIMITATIONS

This protocol provides a step-by-step description of building an English machine reading compre-

hension system, collecting data points, and visualizing behaviors in different attention zones and

layers. Our previous study also performed experiments on Chinese datasets and with different

pre-trained language models, such as ELECTRA (Clark et al., 2020), etc. The protocol has good

generalizability in these settings but may be slightly different in other settings, such as using the da-

taset in different datasets and pre-trained language models. However, such modifications are esti-

mated to be minor, as the main technique presented is relatively independent of language and

model type.

Table 1. The results of masking each attention zone in different layers (single run)

Layer All Q2 Q2P P2Q P2

1 78.344 80.539 80.482 79.991 66.982

2 80.028 80.114 80.360 80.388 76.424

3 79.688 80.227 80.293 79.792 78.666

4 80.028 79.896 80.577 79.527 76.291

5 77.237 80.180 80.227 77.512 80.568

6 79.536 79.886 80.539 80.568 78.553

7 79.149 79.858 80.539 80.492 78.231

8 78.600 79.858 80.464 80.539 78.647

9 78.666 79.991 80.218 78.978 78.061

10 79.347 80.407 80.180 78.997 76.670

11 79.158 80.577 80.549 76.405 80.568

12 80.539 80.568 80.568 80.501 78.505

Table 2. The results for our previous study in comparison with Table 1

Layer All Q2 Q2P P2Q P2

1 78.397 80.924 80.466 80.840 66.275

2 80.233 80.609 80.795 80.874 76.519

3 79.890 80.513 80.679 80.085 79.031

4 80.261 80.445 80.880 79.959 77.223

5 77.377 80.855 80.753 77.925 79.709

6 80.238 80.451 80.861 80.869 78.704

7 79.828 80.390 80.907 80.848 78.458

8 79.256 80.416 80.865 80.872 79.156

9 78.632 80.526 80.672 79.599 78.575

10 78.679 80.539 80.536 80.267 76.333

11 76.846 80.935 80.889 72.157 78.503

12 80.761 80.901 80.901 80.850 78.880

Standard
deviation of
difference

0.819 0.152 0.131 1.405 0.815
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TROUBLESHOOTING

Problem 1

Using this protocol under a different operating system, such as macOS or Windows.

Potential solution

Although our protocol is under the Linux system with the TPU computing device, it is also applicable

to other operating systems (OS) with different compute devices (CPU or GPU). Here we provide

several tips on migrating our protocol to these settings.

Some commands can be adapted to a different OS. For example, ‘‘wget’’ command in Linux can be

changed with ‘‘curl’’ in macOS. ForWindows users, we can also directly perform filemanagement in a

graphical interface without using command lines.

macOS is equipped with Python, and most commands in this protocol can be used. For Windows

users, one can easily install Python and other dependencies via the online tutorial: https://

packaging.python.org/en/latest/tutorials/installing-packages.

If you are using CPU or GPU for training models, please set ‘‘–use_tpu’’ argument as ‘‘False’’ in steps

4.b and 7.b and ignore the other arguments that are related to TPU.

Problem 2

Using the ‘‘pip’’ command to install Python libraries is recommended in most cases, as it will also

automatically install any related dependencies without seeking them individually. Sometimes, we

may encounter a common error message as follows (step ‘‘package installation’’ in ‘‘before you

begin’’ section).

Potential solution

This problem is a common issue when using the ‘‘pip’’ command, which indicates that we do not have

enough permissions to install packages. To solve this problem, we can simply pass an additional

argument ‘‘–user’’ to the ‘‘pip’’ command, such as follows (suppose we are installing ‘‘seaborn’’

package).

If the problem persists, we can also use ‘‘sudo’’ command to allow us to access restricted files and

operations. After executing the following command, we should also input the password to complete

this command. Please make sure that the current user has ‘‘sudo’’ permissions. If you are not in

‘‘sudo’’ group, please contact your administrator to grant you ‘‘sudo’’ permissions.

Problem 3

The training log shows an error message, and the training fails (step 5).

ERROR: Could not install packages due to an EnvironmentError: [Errno 13] Permission denied:

’/some-path-to-library’

> pip install seaborn –user

> sudo pip install seaborn

Resource exhausted: Attempting to reserve 14.10G at the bottom of memory. That was not

possible. There are 14.32G free, 0B reserved, and 14.09G reservable.
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Potential solution

Although this error message may not occur with our training protocol and hyperparameter settings,

it may rarely occur when the TPU server is extremely busy, and the TPU device may sometimes fail. If

this happens, we recommend doing one of the following steps to resolve this issue.

Try to use a smaller batch size in step 4.b. Note that the batch size should be a multiple of 8.

If the error persists, we recommend deleting the TPU and adding a new TPU instead. This will resolve

most of the issues related to unexpected TPU errors.

Further common issues related to the use of TPU can also be found at https://cloud.google.com/

tpu/docs/troubleshooting/trouble-tf.

Problem 4

When using a fixed random seed, the training results are not deterministic (note in step 6).

Potential solution

It is a well-known issue that TensorFlow with GPU or TPU computing device suffers from the nonde-

terministic issue, even with a fixed random seed. This means that a fixed random seed will not lead to

the same training result at the end. This is a complex issue that is related to many possible reasons,

including different versions of libraries, different computing architectures, different parallelism stra-

tegies, etc. Thus, we recommend running each experiment multiple times and obtaining their

average scores for visualization to ensure that the results are more robust.

It is worth noting that although some libraries, such as PyTorch (Paszke et al., 2019), do not seem to

suffer from this issue, we also recommend runningmultiple experiments to achieve robust and stable

results using different random seeds, as the weight initialization (which depends on the chosen

random seed) is critical for training deep learning models.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Yiming Cui (ymcui@ir.hit.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The datasets and code are available at GitHub: https://github.com/ymcui/mrc-model-analysis and

archived at Zenodo with a https://doi.org/10.5281/zenodo.6522993.
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