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Abstract

Pre-trained Language Model (PLM) has be-
come a representative foundation model in the
natural language processing field. Most PLMs
are trained with linguistic-agnostic pre-training
tasks on the surface form of the text, such as the
masked language model (MLM). To further em-
power the PLMs with richer linguistic features,
in this paper, we aim to propose a simple but
effective way to learn linguistic features for pre-
trained language models. We propose LERT,
a pre-trained language model that is trained
on three types of linguistic features along with
the original MLM pre-training task, using a
linguistically-informed pre-training (LIP) strat-
egy. We carried out extensive experiments on
ten Chinese NLU tasks, and the experimental
results show that LERT could bring significant
improvements over various comparable base-
lines. Furthermore, we also conduct analytical
experiments in various linguistic aspects, and
the results prove that the design of LERT is
valid and effective.

1 Introduction

Pre-trained Language Model (PLM) has been
proven to be a successful way for text represen-
tation, which considers rich contextual informa-
tion. Among several types of pre-trained language
models, auto-encoding PLMs, such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019b),
are relatively popular for natural language under-
standing (NLU) tasks. Unlike the auto-regressive
PLMs (e.g., GPT (Radford et al., 2018)) that use a
standard language model as the training objective,
auto-encoding PLMs largely rely on pre-training
tasks to learn contextual information. Masked lan-
guage model (MLM), which was first proposed in
BERT, has been a dominant pre-training task for
auto-encoding PLMs, such as RoOBERTa, ALBERT

"Pre-print version, subjected to changes. Resources are
available at https://github.com/ymcui/LERT

(Lan et al., 2020), ERNIE (Sun et al., 2019), De-
BERTa (He et al., 2021), etc., demonstrating its
broad generalizability in learning text representa-
tions. The MLLM task learns to recover word infor-
mation from the masked text, where the masked
word is usually chosen randomly, indicating that
MLM is a linguistic-agnostic pre-training task with-
out explicit utilization of linguistic knowledge.

Though it is widely perceived that the pre-trained
language model entails rich linguistic knowledge
(Jawabhar et al., 2019), some researchers propose
to further include external knowledge in PLMs.
Specifically, to incorporate linguistic knowledge
into the pre-trained language model, various efforts
have been made in the community, such as incorpo-
rating structural knowledge (Zhou et al., 2020; Xu
et al., 2021), including additional linguistic tasks
(Zhang et al., 2021), etc. Though various efforts
have been made, the previous work has several
limitations. Most of these works only focus on in-
cluding several linguistic features in PLM without
carefully analyzing how individual features con-
tribute to the overall performance and the relations
between different tasks. Also, the implementations
are relatively complex, as structural knowledge can-
not be directly applied into PLMs.

To alleviate the issues above, in this paper, we
leverage the traditional natural language process-
ing method to explicitly include more linguistic
knowledge, creating weakly-supervised data for
model pre-training. Also, to investigate whether
pre-trained language models can benefit from ex-
plicitly injecting linguistic knowledge, in this pa-
per, we propose a new pre-trained language model
called LERT (Linguistically-motivated bidirec-
tional Encoder Representation from Transformer).
LERT is trained on the masked language model
as well as three types of linguistic tasks, includ-
ing part-of-speech (POS) tagging, named entity
recognition (NER), and dependency parsing (DEP),
forming a multi-task pre-training scheme. Further-
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more, to balance the learning speed for each pre-
training task, we propose a linguistically-informed
pre-training (LIP) strategy, which learns fundamen-
tal linguistic knowledge faster than the high-level
ones. With thorough ablations and analyses, LERT
has proven effective on various natural language un-
derstanding tasks over comparable baselines. The
contributions of this paper are listed as follows.

* We propose a simple way to incorporate three
types of linguistic features for pre-trained lan-
guage models with a linguistically-informed
pre-training (LIP) strategy.

» With extensive and robust experiments on ten
popular Chinese natural language understand-
ing tasks, LERT yields significant improve-
ments over comparable baselines. Several
analyses also prove the effectiveness of LERT.

* The resources are made publicly available to
further facilitate our research community.

2 Related Work

The recent advancement of natural language pro-
cessing largely owes to the development of text
representations. Speech signals can be represented
by waves, and images can be represented by pixels,
where they all have clear physical concepts and
can be directly represented in computers. However,
when it comes to natural language, it has no exact
representation for a specific semantic. Thus, a ma-
jor research topic in NLP is to find a better way for
text representation. In the last decade, static word
embedding has been a dominant text representa-
tion method in NLP, such as word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014).
However, these representations cannot deal with
the problem of polysemy. Later, ELMo (Peters
et al., 2018) was proposed to solve this issue, which
models the text in recurrent neural networks, and
word representation can be adjusted by its context.
Transformer-based (Vaswani et al., 2017) neural
networks have proven effective among various NLP
tasks. A combination of the transformer model and
text representation has led to the recent emergence
of pre-trained language models. Pre-trained lan-
guage model (PLM), such as BERT and GPT, uses
deep transformer models to encode the text in a
contextual way, which can be applied to a wide
range of natural language processing tasks. The
training of PLM only requires large-scale unlabeled
text with self-supervised tasks, such as the masked

language model. Though linguistic knowledge is
not explicitly injected, various PLMs achieve sig-
nificant improvements on many NLP tasks.

One of the main reasons that make PLMs suc-
cessful is that pre-trained language models learn
better text semantics and entail linguistic knowl-
edge, though they are not explicitly learned in the
self-supervised task, which is commonly perceived
by the community. For example, Jawahar et al.
(2019) discovered that the intermediate layers of
BERT capture rich linguistic information. Koval-
eva et al. (2019) focuses on the multi-head self-
attention mechanism itself to demonstrate its re-
dundancies. Liu et al. (2019a) investigated the
transferability of contextual representations with
several linguistic probing tasks. Hewitt and Man-
ning (2019) propose a structural probe for finding
syntax information in pre-trained language models.
These works have brought us a better understand-
ing of which types of linguistic features are learned
in PLMs.

Some researchers also tried incorporating lin-
guistic features in pre-trained language models to
further improve their performance on downstream
tasks. Zhou et al. (2020) propose LIMIT-BERT,
which incorporates five linguistic tasks: part-of-
speech, constituent and dependency parsing, span,
and dependency semantic role labeling (SRL). Xu
et al. (2021) propose a syntax-enhanced pre-trained
model, which incorporates a syntax-aware attention
layer during both the pre-training and fine-tuning
stages. Zhang et al. (2021) utilizes part-of-speech
tagging and named entity recognition as additional
linguistic tasks during pre-training. Liu et al.
(2021) propose LEBERT for Chinese sequence la-
beling, which incorporates external knowledge into
BERT layers. Zhang et al. (2022) propose CK-
BERT, which uses linguistic-aware MLM and con-
trastive multi-hop relation model for pre-training.

Unlike previous works that either depend on
incorporating structural knowledge with complex
model design or without a clear exposition of the
contribution by each linguistic feature, in this pa-
per, we proposed LERT, which aims to directly uti-
lize the linguistic tags for multi-task pre-training.
The pre-training task is chosen by careful analysis,
and the LERT also benefits from a linguistically-
informed pre-training scheme, which is in line with
intuitive thinking. The experiments and analyses
present a clear contribution of each linguistic fea-
ture as well as other components to explicitly allow
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Figure 1: Overview of LERT. We only use one text segment in the input for simplicity, i.e., we still use two text

segments for implementation, separated by [SEP] token.

us to understand which type of linguistic feature
is the most helpful in creating a better pre-trained
language model.

3 LERT

3.1 Overview

An overview of the proposed LERT is depicted
in Figure 1. The formulation of LERT is simple
and straightforward. Firstly, we perform linguistic
analysis on the given input text to get word seg-
mentation information and extract its linguistic fea-
tures. The word segmentation information is used
to perform Chinese whole word masking (wwm)
and N-gram masking (Cui et al., 2021) (identi-
cal to MacBERT (Cui et al., 2021), PERT (Cui
et al., 2022), etc.) in masked language model task.
The linguistic features are used for linguistic task
pre-training. Then we use the extracted linguistic
features to perform multi-task pre-training along
with the original MLLM task, which linguistically-
informed pre-training scheme.

3.2 Linguistic Features

In this paper, we aim to utilize linguistic features
in a simple way. To meet this criterion, the gener-
ated linguistic feature should have two characteris-
tics: high-accuracy and uniqueness. High-accuracy
means that the linguistic feature should be highly
reliable in terms of tagging performance. Though
current language analysis tools, such as LTP (Che
et al., 2010), Stanford CoreNLP (Manning et al.,
2014), etc., are capable of analyzing the linguis-
tic features for the text, not all of the features are

highly accurate. Uniqueness means that each in-
put token should have exactly one target tag for a
specific linguistic feature, whereas most tree-based
or graph-based linguistic analyses do not meet this
standard and requires further complex processing.

Considering both conditions, in this paper, we
use LTP (Che et al., 2010) for annotating linguis-
tic tags for the input text with three types of lin-
guistic features, i.e., part-of-speech (POS), named
entity recognition (NER), and dependency pars-
ing (DEP). These three types of linguistic features
are relatively fundamental and achieve good per-
formance on tagging and meet one-to-one tagging
conditions.” A complete list of linguistic tags are
depicted in Table 1. Specifically,

* POS: Each input token is assigned to a unique
POS tag, resulting in 28 types.

* NER: We use the “BIEOS” tagging scheme to
annotate input tokens with NER information,
resulting in 13 types.

* DEP: We perform syntactic dependency pars-
ing on the input sequence. Note that we at-
tribute the relation label to its dependent (not
head) to ensure each token has a unique label,
resulting in 14 types.

After getting these linguistic labels for each in-
put token, we can treat them as weakly-supervised
labels for pre-training, where we illustrate pre-
training tasks in the next.

2POS: 98.4% (P), NER: 91.7% (F), DEP: 84.8 (UAS),
according to http://1tp.ai/docs/1tp3.x/theory.html
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Type (#) Tags (abbreviation)

noun (n), verb (v), punctuation (wp), aux-
iliary (u), adverb (d), adjective (a), number
(m), preposition (p), pronoun (r), geographi-
cal name (ns), conjunction (c), quantity (q),
temporal noun (nt), person name (nh), direc-
tion noun (nd), abbreviation (j), idiom (i),
other noun-modifier (b), organization name
(ni), other proper noun (nz), location noun
(nl), descriptive words (z), suffix (k), foreign
words (ws), onomatopoeia (0), prefix (h), ex-
clamation (e), non-lexeme (x)

POS
(28)

outside (O), single (S-Ni/Ns/Nh), organization
names (B/I/E-Ni), person names (B/I/E-Nh),
location names (B/I/E-Ns)

NER
13)

attribute (ATT), punctuation (WP), adver-
bial (ADV), verb-object (VOB), subject-
verb (SBV), coordinate (COO), right ad-
junct (RAD), head (HED), preposition-object
(POB), complement (CMP), left adjunct
(LAD), fronting-object (FOB), double (DBL),
indirect-object (I0B)

DEP
(14)

Table 1: A list of linguistic tags used in LERT.

3.3 Model Pre-training

LERT is trained on the masked language model as
well as three linguistic tasks, forming a multi-task
training scheme.

3.3.1 MLM Task

For the MLLM task, we follow most of the previous
works that only make predictions on the masked
positions® instead of the whole input sequence. We
denote the last hidden layer representation of L-
layer transformer as H € RY*? (I is the length
of input sequence, d is hidden size), and a subset of
representations w.r.t. masked positions as H™ €
R¥*4 (k is the number of masked positions), where
H™ C H. Then we use a fully-connected layer,
followed by a layer normalization layer on H™.

H™ = LayerNorm(FFN(H™)) (1)

We use the input word embedding matrix E €
R >4 (V/ is the vocabulary size) to project the H™
into vocabulary space, and use the softmax function
to get normalized probabilities.

p; = softmax(H"E' +b), p; cRY (2

Finally, we use the standard cross-entropy loss

>Note that “masked positions” includes three types of
masking: “replace with [MASK]”, “keep original word”, and
“replace with the random word”.

to optimize the MLM pre-training task.

M
1
Laiv = — 57 Z; yilog p; 3)

3.3.2 Linguistic Tasks

For each linguistic task, we treat it as a classifi-
cation task. Each input token is projected to its
linguistic feature (POS, NER, and DEP), which
was annotated using the method described in the
previous section. Specifically, given the representa-
tion H'™, we use a fully-connected layer to project
it into linguistic labels for each task.

pf = softmax(I:IZmW*T +b%), p; e RV (@)

In Equation 4, the x can be one of three linguis-
tic tasks, and V* denotes the number of linguistic
labels for each task. We use standard cross-entropy
loss to optimize each linguistic task.

3.3.3 Linguistically-informed Pre-training

Finally, the overall training loss is formulated as
follows, where \; € [0, 1] is the scaling factor to
the respective loss £; for each linguistic task (POS,
NER, and DEP).

L=Lwm+ Y NLi, i€ {P,N,D} (5)

7

A vanilla pre-training scheme is to treat all sub-
tasks as equal, resulting in the following equation.

L=Lyvim+ Lp+ LN+ LD (6)

Intuitively, the MLM task is the most important
one among all subtasks. However, how do we
decide the scaling factor X for each linguistic task?

In this paper, we propose a linguistically-
informed pre-training (LIP) strategy to tackle this
issue. By looking into these linguistic features,
they are not completely equivalent. The NER fea-
ture depends on the output of POS tagging, while
the DEP feature depends on both POS and NER
tagging. We conjecture that POS is the most fun-
damental linguistic feature, followed by NER and
DEP. In light of their dependencies, we assign dif-
ferent learning speeds for each linguistic feature,
yielding faster learning of POS than NER and DEP.
This is similar to human learning, where we usu-
ally learn basic things first and then the dependent
high-level knowledge.

Formally, the loss scaling parameters are deter-
mined by the current training step ¢ and constant



end step for scaling 7} that control the learning

speed for each linguistic task.

P
A = min{—,1},x € {P,N,D} @)
T

Specifically, in this paper, we set T, as 1/6, 1/3,
and 1/2 of the total training steps for POS, NER,
and DEP features, respectively. After 1/2 of the
total training steps, the training loss will become
Equation 6, where all tasks contribute equally to
the overall loss. In this way, the POS features
learn the most quickly, followed by NER and DEP.
We empirically find this strategy yields better per-
formance, and detailed analysis also proves our

strategy is effective (Section 5.2) and in line with
intuitive thoughts.
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Figure 2: Linguistically-informed pre-training strategy
for LERT (with a total pre-training step of 2M).

4 Experiments

4.1 Setups for Pre-training

In this paper, we mainly train three LERT models.
The basic information is listed in Tabel 2. Other
pre-training setups are illustrated as follows.

* Data: We use the training data as in MacBERT
and PERT. It consists of the Chinese Wikipedia
dump, encyclopedia, community question an-
swering, news articles, etc., resulting in 5.4B
words and taking about 20G of disk space.

» Text processing: We use WordPiece tokenizer
(Wu et al., 2016) as in BERT and similar variants.
All linguistic processing (such as word segmen-
tation, tagging, etc.) is done with LTP (Che et al.,
2010). We directly use the same vocabulary as in
Chinese BERT-base with 21,128 entries.

* Optimization: We use ADAM (Kingma and Ba,
2014) with weight decay (rate = 0.1) optimizer
using an initial learning rate of 1e-4. Each model

is trained on 2M steps with the first 10K steps of
linear warmup for learning rate. All models are
trained from scratch.

* Others: The maximum sequence length is 512.
The overall masking ratio is set as 15%.

¢ Training device: All models are trained on a sin-
gle Cloud TPU v3-8 (128G HBM) with gradient
accumulation (if necessary).

Model Params Layers Hid. A.H. Batch
LERT man I5M 12 256 4 1024
LERThase 102M 12 768 12 416
LERT arge 325M 24 1024 16 256

Table 2: Model structure for different sizes of LERT.
Hid: hidden size, A.H.: attention heads.

4.2 Setups for Fine-tuning Tasks

Following previous works (Cui et al., 2021, 2022),
we examine LERT’s performance on ten natural
language understanding tasks, including machine
reading comprehension (MRC), text classification
(TC), named entity recognition (NER), etc. Specif-
ically,

¢ MRC (2): CMRC 2018 (Cui et al., 2019), DRCD
(Shao et al., 2018).

e TC (6): XNLI (Conneau et al., 2018), LCQMC
(Liu et al., 2018), BQ Corpus (Chen et al., 2018),
ChnSentiCorp (Tan and Zhang, 2008), TNEWS
(Xu et al., 2020), OCNLI (Hu et al., 2020).

¢ NER (2): MSRA-NER (SIGHAN 2006) (Levow,
2006), People’s Daily (PD)*.

Dataset | MaxL  Ep. | Train Dev  Test
CMRC-18 512 3/2/1 10K 32K 49K
DRCD 512 5/2/3 27K 35K 35K
XNLI 128 5/2/2 | 392K 2.5K 5K
LCQMC 128 5/3/3 | 240K 8.8K 12.5K
BQ Corpus 128 5/3/2 | 100K 10K 10K
CSC 256 5 9.6K 12K 1.2K
TNEWS 128 5 533K 10K 10K
OCNLI 128 5/5/3 56K 3K 3K
MSRA 256 10 45K - 34K
PD 256 10 51K 4.6K -

Table 3: Hyper-parameter settings and data statistics
for fine-tuning tasks. MaxL: sequence max length, Ep:
training epochs (small/base/large).

4https: //github.com/ProHiryu/bert-chinese-ner
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System CMRC 2018 DRCD
Dev (EM/F1) Test (EM/F1) Challenge (EM/F1) Dev (EM/F1) Test (EM/F1)

BERThyec 67.1(65.6)  85.7(85.0)  71.4(700) 87.7(87.0)  24.0(200) 47.3(446) | 850(845)  912(90.9)  83.6(83.0)  90.4(89.9)
ROBERTaygse 67.4(66.5)  87.2(86.5  72.6(714)  89.4(88.8)  262(246) S51.0(49.1) | 86.6(859) 925(922)  856(852)  92.0(91.7)
ELECTRAp,e 684 (68.0)  84.8(84.6)  73.1(727) 87.1(86.9) 22.6(21.7) 450(438) | 87.5(87.0) 925(923) 86.9(86.6) 91.8(91.7)
MacBERT e 68.5(67.3)  87.9(87.1)  732(724)  89.5(892)  30.2(264)  540(522) | 89.4(89.2) 943 (941)  89.5(88.7)  93.8(93.5)
PERTye 68.5(68.1)  87.2(87.1)  72.8(725)  89.2(89.0) 28.7(282)  554(53.7) | 89.5(88.9) 93.9(93.6) 89.0(88.5)  935(93.2)
LERT ), 69.2(68.4)  88.1(87.9) 73.5(72.8)  89.7(89.4) 27.7(267)  559(54.6) | 90.5(90.2)  95.1(94.9)  90.5(90.2)  94.9 (94.7)
ROBERTayrgc 68.5(67.6)  88.4(87.9)  742(724)  90.6(90.0) 31.5(30.1)  60.1(57.5) | 89.6(89.1)  94.8(944)  89.6(88.9)  94.5(94.1)
ELECTRApge  69.1(682)  852(84.5)  73.9(72.8) 87.1(86.6) 23.0(21.6) 442(432) | 88.8(88.7) 933(932)  88.8(882)  93.6(932)
MacBERTjqe 707 (68.6)  88.9(88.2)  74.8(73.2)  90.7(90.1)  31.9(29.6)  60.2(57.6) | 91.2(90.8)  956(953)  9L7(90.9)  95.6(95.3)
PERT}yrge 722(71.0)  89.4(88.8)  76.8(75.5  90.7(904)  323(30.9)  592(58.1) | 90.9(90.8)  955(952)  91.1(90.7)  952(95.1)
LERT}rge 712(70.5)  89.5(89.1)  756(75.1)  90.9(90.6)  323(297)  61.2(59.2) | 9L.6(9L3)  96.1(958) 915(9L1) 959 (95.5)

Table 4: Experimental results on MRC tasks: CMRC 2018 (Simplified Chinese) and DRCD (Traditional Chinese).
We report both the maximum and average scores (in parenthesis) for each set. Overall best performances are
depicted in boldface (base-level and large-level are marked individually).

System XNLI LCQMC BQ Corpus ChnSentiCorp TNEWS OCNLI
Dev Test Dev Test Dev Test Dev Test Dev Dev

BERTye 79.4 (78.6) 78.7(78.3) 89.6 (89.2) 87.1 (86.6) 86.4 (85.5) 85.3 (84.8) 95.4 (94.6) 95.3 (94.8) 57.0 (56.6) 76.0 (75.3)
RoBERTay,¢e 80.0 (79.2) 78.8 (78.3) 89.0 (88.7) 86.4 (86.1) 86.0 (85.4) 85.0 (84.6) 94.9 (94.6) 95.6 (94.9) 57.4(56.9) 76.5 (76.0)
ELECTRApyqe 77.9 (77.0) 78.4(77.8) 90.2 (89.8) 87.6 (87.3) 84.8 (84.7) 84.5 (84.0) 93.8 (93.0) 94.5 (93.5) 56.1(55.7) 76.1 (75.8)
MacBERT},e 80.3 (79.7) 79.3(78.8) 89.5(89.3) 87.0 (86.5) 86.0 (85.5) 85.2(84.9) 95.2 (94.8) 95.6 (94.9) 574 (57.1) 77.0 (76.5)
PERT5¢ 78.8 (78.1) 78.1(77.7) 88.8 (88.3) 86.3 (86.0) 84.9 (84.8) 84.3 (84.1) 94.0 (93.7) 94.8 (94.1) 56.7 (56.1) 75.3 (74.8)
LERT}, 50 80.2 (79.5) 79.8 (79.3) 89.5(89.2) 86.6 (86.4) 85.9 (85.6) 85.1(84.9) 94.9 (94.7) 95.9 (95.2) 57.5(57.1) 78.2 (77.5)
RoBERTay, e 82.1(81.3) 81.2 (80.6) 90.4 (90.0) 87.0 (86.8) 86.3 (85.7) 85.8 (84.9) 95.8 (94.9) 95.8 (94.9) 58.8 (58.4) 78.5(78.2)
ELECTRAjyge 81.5 (80.8) 81.0 (80.9) 90.7 (90.4) 87.3(87.2) 86.7 (86.2) 85.1(84.8) 95.2 (94.6) 95.3 (94.8) 57.2(56.9) 78.8 (78.4)
MacBERT]ge 82.4 (81.8) 81.3 (80.6) 90.6 (90.3) 87.6 (87.1) 86.2 (85.7) 85.6 (85.0) 95.7 (95.0) 95.9 (95.1) 59.0 (58.8) 79.0 (78.7)
PERTyge 81.0 (80.4) 80.4 (80.1) 90.0 (89.7) 87.2 (86.9) 86.3 (85.8) 85.0 (84.8) 94.5 (94.0) 95.3 (94.8) 57.4(572) 78.1(71.8)
LERT g, 81.7 (81.2) 81.0 (80.7) 90.2 (90.0) 87.3 (86.9) 86.6 (86.0) 85.1(84.7) 95.6 (94.9) 96.2 (95.4) 58.7 (58.5) 79.4 (78.9)

Table 5: Experimental results on text classification tasks (including natural language inference tasks): XNLI,
LCQMC, BQ Corpus, ChnSentiCorp, TNEWS, and OCNLIL.

System MSRA-NER People’s Daily
BERThase 95.3 (94.9) 95.3 95.1)
RoBERTapse 95.5 95.1) 95.1 (94.9)
ELECTRApase 95.4 95.0) 95.1 94.9)
MacBERTase 95.3 (95.1) 95.2 (94.9)
PERThase 95.6 (95.3) 95.3 95.1)
LERT e 95.7 95.9) 95.6 (95.4)
RoBERTay,ge 95.5 (95.5) 95.7 (95.4)
ELECTRA rge 95.0 (94.8) 94.9 (94.8)
MacBERT e 96.2 (95.9) 95.8 (95.7)
PERT rge 96.2 (96.0) 96.1 (95.8)
LERT arge 96.3 (96.0) 96.3 (96.0)

Table 6: Experimental results (F-score) on NER tasks.

We use a universal initial learning rate for each
task for the same model size, with 5e-5 for small-
sized models, 3e-5 for base-sized models, and 2e-5
for large-sized models. Other details for task fine-
tuning are shown in Table 3. The implementations
are based on original BERT.’

4.3 Main Results

We mainly compare our results with pre-trained
language models that use a similar amount of train-
ing data. Experimental results on base-sized and

5https ://github.com/google-research/bert

large-sized models are shown in Table 4, 5, and 6.

For machine reading comprehension tasks,
LERT yields significant improvements over var-
ious pre-trained language models by a large margin
on both base-sized and large-sized LERT. This in-
dicates that LERT can better handle complex task
that requires various types of linguistic knowledge
(e.g., machine reading comprehension).

For text classification tasks, the results are varied.
We can see that LERT yields the best performance
on several tasks, such as TNEWS, OCNLI, ChnSen-
tiCorp, etc. For other tasks, the average results are
competitive against the best-performing pre-trained
language model. Unlike the MRC task, the text
classification tasks are usually determined by very
few words in the input sequence, such as sentiment
words, negation words, etc. In this context, we
speculate that the additional linguistic knowledge
introduced in LERT is not that useful for further
improving classification accuracy. Nonetheless, we
can see that LERT still provides decent scores on
several classification tasks.

For named entity recognition tasks, we can see
that LERT yields the best performance on both
tasks, including base-sized and large-sized variants.
The results are expected because the NER task
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System Param CMRC 2018 DRCD XNLI LC BQ CSC 1IN OC | MSRA PD
y EM F1 EM Fl1 | ACC ACC ACC ACC ACC ACC F F
RBT3 38M 622 81.8 750 839 | 723 8.1 833 928 - - - -
ELTsman+ 12M 68.5 852 829 887 | 746 858 821 93.6 - - - -
ELTman 12M 67.8 834 790 858 | 73.1 859 820 943 - - - -
BERTman 15M 653 839 81.7 88.1 74.6 8.7 830 936 552 708 91.8 91.5
LERT sman 15M 67.8 852 832 894 | 752 853 834 940 549 710 92.3 92.1

Table 7: Test results on small models. ELT: ELECTRA. Overall best scores are depicted in boldface, and the

comparable best score (the same training data size) is shown in italics.

System CMRC DRCD XNLI LC BQ CSC 1N OC MSRA PD Average
EM Fl EM F1 ACC ACC ACC ACC ACC AcCC F F

Baseline 66.8 86.7 89.0 94.1  78.1 88.7 851 942 564 76.0 94.6 94.4 83.58
+POS 670 869 89.0 939 784 889 851 942 563 75.6 95.1 95.2  83.72 +0.149)
+NER 67.0 872 894 943 785 80.1 853 942 56.8 76.0 95.5 954  83.97 +039)
+DEP 672 869 893 942 786 889 850 940 56.0 76.0 94.9 95.0 83.72 +0.149)
+ All 67.5 873 895 944 788 889 852 942 567 764 954 954  84.03 (+045)

LERTpe 684 879 902 949 795 8.2 856 947 571 715 95.4 95.4  84.65 +1.07)

Table 8: Ablation results on using different linguistic features. We report five-run average scores on the development
set of each task. The reported results are on base-sized PLMs, trained with 500k steps (except for LERT},gc)-

is added into the pre-training stage as one of the
linguistic tasks. Further analyses are presented in
Section 5.

Overall, LERT yields significant improvements
on MRC and NER tasks and achieves competitive
performance on TC tasks over various pre-trained
language models.

4.4 Results on Small Models

Along with conventional base-sized and large-sized
LERT, we also train a small-sized LERT ;1. Un-
like base-sized and large-sized models, small mod-
els are usually not comparable to the previous work
due to various types of model structure, including
hidden size, number of layers, number of attention
heads, etc. In this paper, to make the results compa-
rable, we also train a BERT .5, which shares the
same training recipe with LERT )1, except that it
is only trained on the MLM task. The experimental
results are shown in Table 7.

Similar to the base-sized and large-sized models,
LERT yields consistent improvements on MRC
and NER tasks and moderate improvements on
classification tasks, which further demonstrates
that linguistic knowledge preference for different
tasks differs. We also compare LERT 1 with
RBT3 (38M parameters), ELECTRAgpan (12M),
and ELECTRAman+ (12M). Note that ELECTRA
(Clark et al., 2020) uses embedding decomposition
that projects word embedding into a smaller vector

and then uses a fully-connected layer to project into
hidden size. However, LERT does not apply this ap-
proach, resulting in a little bit more parameter sizes
than ELECTRA. The results show that LERT .11
performs better on a majority of downstream tasks
over ELECTRA,.n and RBT3, and even better
than ELECTRAa114, which was trained on 180G
pre-training data.

S Analysis

5.1 Ablation Study

In order to identify the effectiveness of each lin-
guistic task, in this section, we perform the ablation
study on LERT. We add each linguistic task on top
of MLM (baseline) to verify their effectiveness in-
dividually.® The results are shown in Table 8. As
we can see that all three types of linguistic features
contribute to the overall improvement positively,
where the NER features are the most important, es-
pecially for downstream NER tasks. Furthermore,
using all three linguistic features yields another
boost in the final performance, where all down-
stream tasks yield consistent improvements.

5.2 Effect of Linguistic Task Order

For better pre-training LERT, we propose a
linguistically-informed pre-training strategy, which

®We do not perform task warmup for these experiments to
keep comparisons as pure as possible.



learns basic linguistic knowledge faster (POS) than
the high-level knowledge (NER and DEP), forming
a “PND” scheme.” To further demonstrate its ef-
fectiveness, we also trained another three LERT e
models that use different task warmup strategies,
including PDN, NPD, and DNP, which indicates
the different warmup order of linguistic tasks. To
demonstrate the effectiveness of the task warmup
strategy, we add another “no warmup” experiment
that uses Equation 6 for training. The results are
shown in Figure 3. Overall, the original imple-
mentation in LERT (i.e., “PND” scheme) yields
the best performance among all variants, where we
conclude our findings as follows.

* By comparing “PND”, “PDN”, and “NPD”,
we discover that results are better when “POS”
feature learns faster, which matches our in-
tuitive thinking that fundamental knowledge
should be learned faster.

* “NPD” scheme yields the best performance
on NER tasks, suggesting that if the pre-
trained task is directly associated with the
downstream tasks, it is always better to learn
from the beginning.

* “PND” and “PDN” yield better overall perfor-
mance than the others, indicating that faster
basic knowledge (POS) learning is helpful for
better high-level knowledge learning.

 All task warmup schemes show better overall
performance than no task warmup strategy
(i.e., equal weights for each task).

EEE PND mmm NPD
86- mmm PDN DNP

No Warmup

85 1

84 1

Score

831
821
811
80 .
79

Overall MRC TC NER

Figure 3: Effect of different linguistic task order in LIP.
Note that the scores of NER are subtracted by 10 for
clarity. All models are trained with 1M steps.

"We use the initials of each linguistic task to denote a
specific warmup scheme. Concretely, “PND” means the POS
features learn fastest, then NER, followed by DEP.

5.3 Effect of Linguistical Masking

In this paper, we use linguistical multi-task learning
to formalize LERT, where the linguistic knowledge
is used at the output as labels in the pre-training
stage. However, we wonder if linguistic knowledge
can be applied at the input as a hint of masking
and whether it is more effective than LERT’s im-
plementation.

To achieve this goal, we extend the original
masked language model as a linguistic masked lan-
guage model (LMLM). In traditional MLM, the
masking token is [MASK], which does not carry any
linguistic information. In LMLM, we further incor-
porate linguistic tags into [MASK], forming a list of
different masking tokens. For example, if the POS
tag of the masked token is a noun, then the cor-
responding masked token is set as [MASK-POS-n].
In this way, the model is informed with additional
linguistic hints for the masked tokens. We train
three types of LMLM w.r.t. each type of linguistic
knowledge. Also, we set up two additional set-
tings, called “All” (incorporating all three types of
linguistic tags into [MASK]) and “Mix” (randomly
assign one linguistic tag into [MASK]. We use the
same training settings as in Table 8. The results of
LMLM are listed in Table 9.

As we can see that incorporating NER tags into
the masked token yields improvement over vanilla
MLM, especially for the NER tasks. However, for
most of the other settings, LMLM does not yield
consistent improvements. By comparing to the re-
sults in Table 8, we can see that exploiting linguistic
knowledge as the training target yields consistent
and significant improvements over vanilla MLM
and LMLMs. For example, using NER tags as the
training target (average score: 83.97, in Table 8)
yields better performance than in LMLM (average
score: 83.70). These results indicate that the design
of LERT is valid.

System MRC TC NER Average

MLM 842 798 945 83.58
+POS-mask  83.1 794 94.6 83.14
+NER-mask 839 799 948 83.70
+DEP-mask  83.7 79.7 945 83.43
+ All-mask 835 795 945 83.26
+ Mix-mask 839 795 944 83.40

Table 9: Results of linguistical masking (LMLM).



6 Conclusion

In this paper, we propose a new pre-trained lan-
guage model called LERT, which directly incorpo-
rates three types of linguistic features and performs
multi-task pre-training along with the masked lan-
guage model. Three types of common linguistic
features, including POS, NER, and DEP, are gen-
erated by LTP, and LERT learns to predict both
the original word and its linguistic tags for masked
tokens. To better acquire linguistic knowledge, we
also propose a linguistically-informed pre-training
strategy that learns basic linguistic faster than the
high-level ones, which we empirically find useful.
We carried out extensive and robust experiments on
ten Chinese natural language understanding tasks.
The experimental results show that LERT could
bring significant improvements over various com-
parable pre-trained language models, demonstrat-
ing that linguistic knowledge can still boost the
performance of pre-trained language models, espe-
cially for small-sized models.

In the future, we are going to incorporate more
types of linguistic features into pre-trained lan-
guage models, such as semantic dependency pars-
ing, etc. Also, as the proposed task warmup strat-
egy seems to be generally useful, we are going to
investigate if it is helpful to other multi-task learn-
ing scenarios.
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