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Achieving human-level performance on some Machine Reading Comprehension (MRC) datasets is no longer 
challenging with the help of powerful Pre-trained Language Models (PLMs). However, it is necessary to provide 
both answer prediction and its explanation to further improve the MRC system’s reliability, especially for 
real-life applications. In this paper, we propose a new benchmark called ExpMRC for evaluating the textual 
explainability of the MRC systems. ExpMRC contains four subsets, including SQuAD, CMRC 2018, RACE+ , and 
C3, with additional annotations of the answer’s evidence. The MRC systems are required to give not only the 
correct answer but also its explanation. We use state-of-the-art PLMs to build baseline systems and adopt various 
unsupervised approaches to extract both answer and evidence spans without human-annotated evidence spans. 
The experimental results show that these models are still far from human performance, suggesting that the 
ExpMRC is challenging. Resources (data and baselines) are available through https://github .com /ymcui /expmrc.

1. Introduction

Machine Reading Comprehension is a task that requires machines to 
read and comprehend given passages and answer questions. The MRC-

related study has received wide attention over the past few years. We 
have seen tremendous efforts to create challenging datasets [1, 2, 3, 4, 
5, 6] and design effective models [7, 8, 9].

However, although the state-of-the-art systems can achieve better 
performance than the average human on some MRC datasets with the 
help of pre-trained language models [10, 11, 12], the explainability 
of these systems remains uncertain, such as the internal mechanism in 
neural models and giving text explanations. This raises concerns about 
utilizing these models in real-world applications. In a realistic view, 
question answering (QA) or MRC systems that only give final predic-

tions cannot convince the users since these results lack explainability. In 
this context, Explainable Artificial Intelligence (XAI) [13] has received 
much more attention in recent years. XAI aims to produce more ex-

plainable machine learning models while preserving high model output 
accuracy and allowing humans to understand its intrinsic mechanism.

Understanding the intrinsic mechanism of the neural network is a 
challenging issue. In natural language processing field, there are sev-

eral intense discussions on the relevant topics, such as whether attention 
can be explanations [14, 15, 16, 17]. However, the community has not 
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come to a consensus on this question. Nonetheless, we could seek post-

hoc explainability approaches, which target models that are not readily 
interpretable by design. Post-hoc approaches resort to diverse means 
to enhance the model’s interpretability [18]. One of the post-hoc ap-

proaches for NLP is to generate text explanations, which is a practical 
method for alleviating the absence of the neural network’s explainabil-

ity [19]. Although the text explanation does not necessarily interpret 
the model’s intrinsic mechanism, it is informative to know both the 
predicted answer and its text explanation, especially for real-life appli-

cations.

To better evaluate the MRC model’s explainability, in this paper, we 
propose a comprehensive benchmark ExpMRC for the machine reading 
comprehension in a multilingual and multitask way, which evaluates 
the accuracy of both answers and their explanations. The proposed 
ExpMRC contains four subsets, including SQuAD [3], CMRC 2018 [5], 
RACE+ (similar to RACE [4]), and C3 [6], with additional annotations 
of the evidence spans, covering span-extraction MRC and multi-choice 
MRC in both English and Chinese. The MRC model should not only ex-

tract an answer span or select an answer choice for the question but 
also extract a passage span as evidence, which creates more challenges 
to the existing MRC tasks. The resulting dataset contains 11K human-

annotated evidence spans over 4K questions. The contributions of our 
paper are as follows.
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Table 1. Examples in ExpMRC. The evidence is marked with underline. The answer is in blue.

• We release a new MRC benchmark called ExpMRC, which aims to 
evaluate the accuracy of the final answer as well as its explanation, 
encouraging the community to build explainable MRC systems.

• We propose several baseline systems that adopt pseudo-training 
approaches for ExpMRC that do not use any evidence span annota-

tions.

• The experimental results on ExpMRC show that the current com-

petitive pre-trained language models are still far from satisfactory 
in providing explanations for the predicted answer, suggesting that 
the proposed ExpMRC is challenging.

2. Related work

Machine reading comprehension has been regarded as an important 
task to test how well the machine comprehends human languages. In 
the earlier stage, as most of the models [7, 8, 20] are solely trained on 
the training data of each dataset without much prior knowledge, their 
performances are not very impressive. However, as the pre-trained lan-

guage models emerged during these years, such as BERT [10], RoBERTa 
[11], and ELECTRA [12], many systems achieved better performances 
than average humans on several MRC datasets, such as SQuAD 1.1 [3] 
and SQuAD 2.0 [21] datasets.

After reaching the ‘over-human’ performance, there is another is-
sue to be addressed. The decision process and the explanation of these 
artifacts remain unclear, raising concerns about their reliability and 
usability in real-life applications. In this context, XAI becomes more 
important than ever, not only in NLP but also in various directions in 
AI. However, most cutting-edge systems have been developed on neu-

ral networks, and investigating the explainability of these approaches is 
nontrivial.

In NLP, some researchers conducted analyses to better understand 
the internal mechanism of BERT-based architecture. For example, [22] 
discovered that there are repetitive attention patterns across differ-

ent heads in the multi-head attention mechanism indicating its over-

parametrization. However, perhaps the most popular discussion is 
whether the attention can be explanations. Some researchers argue that 
attention cannot be used as explanations, such as [15], who verified 
that using completely different attention weights can also achieve the 
same prediction. In contrast, some works hold positive attitudes about 
this topic [16, 17]. These works have brought us different views of 
attention-based models, but there is still no consensus about this impor-

tant topic.

In MRC, a multi-hop explainable QA dataset called HotpotQA [23] 
was proposed. HotpotQA requires the machine to retrieve relevant doc-

uments and extract a passage span as the answer along with its evidence 
sentences. Various models [24, 25] have been proposed to address this 
task using supervised learning approaches with labeled training data. 

However, unfortunately, most works focus on achieving higher scores 
on the benchmark without specifically caring about the explainability.

For the explainability studies in MRC, [26] propose a method to ex-

tract evidence sentences from multi-choice MRC tasks. [27] propose to 
use system performance rather than visualizing attention score to better 
reveal the model’s explainability. [28] investigate a few black-box at-

tacks at the character, word, and sentence level for MRC systems. [19] 
propose an unsupervised approach to extract rationale in the passage 
for MRC systems.

Although various efforts have been made, we argue that explain-

ability is a universal demand for all MRC tasks and different languages 
but is not restricted to English multi-hop QA. Another issue is that an-

notating evidence for each task is not feasible. We should also seek 
unsupervised or semi-supervised approaches that do not rely on addi-

tional annotated evidence to minimize costs. In this context, we propose 
ExpMRC to specifically focus on evaluating explainability on four tasks, 
covering span-extraction and multi-choice MRC in both English and 
Chinese. ExpMRC does not provide any newly annotated training data. 
We encourage our community to focus on designing unsupervised ap-

proaches to improve the explainability with generalizable approaches 
for different MRC tasks and even different languages. To the best of our 
knowledge, this is the first MRC benchmark in a multitask and multi-

lingual setting, which can be used in not only explainability evaluation 
but also in various directions, such as cross-lingual studies.

3. ExpMRC

3.1. Subset selection

The motivation for our dataset is to provide a comprehensive MRC 
benchmark for evaluating not only the answer prediction accuracy but 
also how well it gives for its explanation. Therefore, our dataset is not 
completely composed of new data. We adopt several well-designed MRC 
datasets and newly annotated data to form ExpMRC to minimize the 
repetitive annotations and place our work well in line with previous 
works.

Specifically, ExpMRC contains the following four subsets, including 
two span-extraction MRC datasets and two multi-choice MRC datasets. 
Examples in ExpMRC are depicted in Table 1. SQuAD, CMRC 2018, 
C3 are partly developed from the respective original dataset. RACE+ is 
a newly annotated subset, where we do not adopt the original RACE 
dataset.

• SQuAD [3] is a well-known dataset for span-extraction MRC. Given 
a Wikipedia passage, the system should extract a passage span as 
the answer to the question.

• CMRC 2018 [5] is also a span-extraction MRC dataset but in Chi-

nese. In addition to the traditional train/dev/test split, a challenge 
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set was also released that requires multi-sentence inference while 
keeping the original span-extraction setting.

• RACE+ is a new subset that is similar to RACE [4]. While we can 
use RACE as the C3 counterpart, we decided not to adopt it. We had 
some in-house collected multi-choice MRC data, which is similar to 
RACE and is also designed for middle and high school students in 
China. More importantly, these data contain additional hints on the 
answering process, which are very helpful for evidence annotation. 
Thus, we decided to use our data instead of RACE.

• C3 [6] is a Chinese multi-choice MRC dataset. The system should 
choose the correct option as the answer after reading the passage 
and question. To ensure domain consistency, we only use non-

dialogue subsets C3
M

.

As the test set of SQuAD is not publicly available, we cannot adopt 
it directly.1 Instead, we follow the original dataset construction steps to 
replicate the subset for testing purposes, where the subset is annotated 
from English Wikipedia passages. Note that we select the passages that 
do not appear in the original SQuAD training and development set.

At this point, we have four subsets (SQuAD, CMRC 2018, RACE+, 
and C3) to be annotated, containing both span-extraction and multi-

choice MRC tasks in both English and Chinese. As SQuAD, CMRC 2018, 
C3 datasets are well-defined datasets with careful annotation proce-

dures, we did not perform additional pre-processing. Regarding our 
RACE+, we follow the pre-processing steps as in RACE [4], as they share 
similar characteristics. Note that to preserve the integrity of the test set 
results, following previous works [3, 5, 21], we do not release the test 
sets to the public. To get the test set results, the participants should 
submit their system and get tested under the online platform (without 
direct access to the hidden test set).

3.2. Annotation process

All four subsets contain passages, questions, candidates (if applica-

ble), and answers. We only need to annotate their evidence span on 
top of them. Before evidence annotation, the annotators are required to 
consider whether a question is appropriate for annotation. After remov-

ing sensitive content, we skipped some questions based on the following 
criteria.

• The evidence is a simple combination of the question and answer 
without much syntactical or semantical variance, such as the evi-

dence span being the same or similar to the question text, where 
the question word is replaced by the answer.

• The questions require external knowledge to be solved and cannot 
only be inferred from the passage. That is, the evidence should not 
be formed by passage span.

• The conclusive questions of the whole passage, such as ‘what is the 
best title or main idea for this passage?’, etc. In this situation, the 
evidence span might be very long.

After the initial check, first, the annotators are asked to read the 
question and the correct answer (passage span or option text). Because, 
as the ground truth answer already exists in the original dataset, it is 
unnecessary to require the annotators to answer the questions again, 
which increases their burden when they recommend the wrong answer, 
and they will eventually consult the ground truth answer to find the 
correct evidence. Then, the annotators select (copy-and-paste) a span 
from the passage that can be evidence of the answer. The evidence 
should be a minimal passage span that can support the answer and does 
not always need to be a complete sentence or clause. We encourage the 
annotators to select the evidence that needs reasoning skills, although 

1 As CMRC 2018 is our previous work, although the test set is not publicly 
available, we can still use it for annotation.

this is not a usual case in these datasets, especially in span-extraction 
MRC, where most of the questions do not need reasoning.

Selecting a single contiguous span makes the task much easier for 
the model, or it will become a sequence labeling task. During the an-

notation, if a redundant span is included to form a single span, we 
instructed our annotator that the length of the redundant span should 
not exceed 30% of the valid span length. However, in most cases (over 
90%), a single contiguous span is enough for our selected datasets. It 
could be problematic for other datasets that require long-range infer-

ence, but this does not often happen in our ExpMRC.

The annotators are paid approximately $0.50 per evidence for all 
types of MRC data. Depending on the dataset language, the annotators 
are either English-majored or Chinese-majored graduate students from 
China.2

Following previous works, we also adopt multiple evidence refer-

ences for each question to maximize the inter-agreement between the 
annotators. During annotation, we do not reveal the annotated evi-

dence span of the other annotators to the current annotator to increase 
the diversity and avoid copy-and-paste behavior. After the preliminary 
annotation, all evidence spans are checked one by one to ensure a high-

quality dataset. Finally, the annotations are verified that the correct 
answer can be selected by only reading the evidence and question to 
ensure that the annotation is valid.

3.3. Data statistics

The statistics of the proposed ExpMRC are listed in Table 2. Note 
that the ‘token’ in Table 2 represents the character for Chinese and the 
word for English.

For all subsets, we provide 2 ∼ 4 referential evidence spans for each 
question. It should be noted that ExpMRC does not provide any newly 
annotated training data. We believe there will be a significant improve-

ment in the performance when there is a proper amount of labeled 
training data for evidence.3 However, we believe that the explainability 
is within the model but does not largely depend on the labeled train-

ing set. We expect our community to develop a self-explainable system 
and evaluate its generalizability in a multilingual or multitask setting. 
If these systems generalize well in ExpMRC, they can also be applied to 
other MRC systems with a different task form or language. Also, devel-

oping an unsupervised or semi-supervised system significantly saves the 
cost of annotating evidence text, which is a promising way to develop 
generalizable and explainable MRC systems. However, if this is in a su-

pervised setting (similar to what we do in HotpotQA), it will be hard to 
generalize to other settings.

We also provide statistics to see what skills are needed when we find 
evidence text in multi-choice MRC. We can also see that the subsets 
of span-extraction MRC tasks exhibit more types of ‘surface matching’ 
(simple word matching) and ‘semantic matching’ (such as ‘man’ and 
‘male’) to find evidence. While, for multi-choice MRC tasks, there are 
more evidences that require complex reasoning, which demonstrates 
that it is harder to extract evidence for these subsets.

The distribution of the question type in each task’s development set 
is depicted in Fig. 1. There are fewer questions of ‘who, when, and where’

in RACE+ and C3, suggesting that these subsets are much more difficult, 
which is in line with the statistics above.

4. Baselines

Given that the proposed ExpMRC is designed to evaluate the ex-

plainability in terms of the system’s explanation text, we mainly focus 

2 The annotators are full-intern students. The cost is only used for estimating 
the total cost of the project.

3 Specifically, it refers to the ground truth evidence, as the answers are avail-

able in each original training set.
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Table 2. Statistics of the proposed ExpMRC.

SQuAD CMRC 2018 RACE+ C3

Dev Test Dev Test Dev Test Dev Test

Language English Chinese English Chinese

Answer Type passage span passage span multi-choice multi-choice

Domain Wikipedia Wikipedia exams exams

Passage Num. 319 313 369 399 167 168 273 244

Question Num. 501 502 515 500 561 564 505 500

Max Answer Num. 3 3 3 3 1 1 1 1

Max Evidence Num. 2 2 3 3 2 2 4 4

Avg/Max Passage Tokens 146/369 157/352 467/961 468/930 311/514 324/603 426/1096 413/1011

Avg/Max Question Tokens 12/28 11/28 15/37 15/37 15/39 16/55 14/28 14/31

Avg/Max Answer Tokens 3/25 3/27 6/64 5/33 6/20 6/27 7/25 7/35

Avg/Max Evidence Tokens 26/62 28/76 43/175 52/313 23/162 23/82 37/199 41/180

Surface Matching - - - - 61% 58% 63% 62%

Semantic Matching - - - - 14% 16% 20% 18%

Complex Reasoning - - - - 25% 26% 17% 20%

Fig. 1. Distribution of question types.

on the unsupervised approaches for our baseline systems, where ground 
truth evidence spans are not provided in the respective original training 
set.4 We use pre-trained language models as the backbones to generate 
answers to the questions. Then we apply several methods to generate 
evidence spans, where we classify them into non-learning and machine 
learning baselines.

4.1. Non-learning baselines

For non-learning baselines, we mainly use the prediction and ques-

tion as the clues for finding evidence. For simplicity, we only con-

sider extracting sentence-level evidence in these baselines, although the 
ground truth evidence may not always be a complete sentence. We first 
split the passage into several sentences using ‘.!?’ as delimiters. Then 
we select one of the passage sentences as the evidence prediction. As a 
preliminary, we should train a normal MRC system using the respective 
original training set that contains <passage, question, answer> to get 
predicted answer. In order to find more accurate evidence sentences, we 
adopt three approaches.

• Most Similar Sentence: We calculate the token-level F1 score be-

tween the predicted answer span (or choice text) and each passage 
sentence. Then we select the sentence that has the highest F1 as the 
evidence prediction. In span-extraction MRC tasks, the extracted 
evidence is the sentence that contains the prediction span in most 
cases.

4 The term ‘unsupervised’ specifically refers that we do not utilize additional 
annotated evidence spans, but we can still use the original training data that 
contains annotated answer spans.

• Most Similar Sentence with Question: Similar to the ‘Most Sim-

ilar Sentence’, but we use both the question text and predicted 
answer span as the key to finding the most similar passage sen-

tence.

• Answer Sentence: In span-extraction MRC tasks, we can directly 
extract the sentence that contains the answer prediction as evi-

dence.

These approaches largely rely on the accuracy of answer prediction, 
as an incorrect prediction will directly affect the evidence finding pro-

cess.

4.2. Machine learning baselines

As no training data are provided in ExpMRC, we seek a pseudo-

training approach to accomplish a machine learning baseline system. 
First, we generate pseudo-evidence for each sample in the respective 
training set, which has no evidence annotation. We use the ground 
truth answer and question text to find the most similar passage sen-

tence as the pseudo-evidence to form pseudo-training data. Then we 
use the pseudo-training data and PLM to train a model that outputs 
both answer and evidence. Specifically, we add an additional task head 
on top of the PLM’s final hidden representation, alongside its original 
answer prediction task, as shown in Fig. 2.

• Span-Extraction MRC: The concatenation of the question 𝑄 and 
passage 𝑃 are fed into PLM, and we use the final hidden represen-

tation with two fully-connected layers to predict the start and end 
positions of the answer span. The input sequence forms as in Fig. 2, 
where [CLS] is the special starting token and [SEP] is the special 
token for separation.

• Multi-Choice MRC: The concatenation of the passage 𝑃 , question 
𝑄, and choice 𝐶𝑖 are fed into the PLM to obtain four pooled rep-

resentations (assuming we have four candidates). Then we use a 
fully-connected layer with softmax activation to predict the final 
choice.

The evidence prediction is identical to the answer prediction in 
span-extraction MRC, where we project the final hidden representation 
𝒉 ∈ ℝ𝑛×ℎ into the start and end probabilities 𝑝s, 𝑝e ∈ ℝ𝑛, as shown in 
Equation (1). We calculate the standard cross-entropy loss of the start 
and end positions for evidence span prediction, as shown in Equation 
(2).

𝑝⋆ = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝒉𝐰⋆ + 𝑏⋆) , ⋆ ∈ {𝑠, 𝑒} (1)

𝐸 = − 1
2𝑁

𝑁∑

𝑖=1
(𝑦s

𝑖
log𝑝s + 𝑦e

𝑖
log𝑝e) (2)
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Fig. 2. Neural network architecture of the baselines.

The final training loss  is the sum of answer prediction loss 𝐴 and 
the evidence prediction loss 𝜆𝐸 (𝜆 ∈ [0, 1], as the pseudo-training data 
are not quite accurate), as shown in Equation (3).

 = 𝐴 + 𝜆𝐸 (3)

5. Evaluation

5.1. Evaluation metrics

To evaluate how well the MRC model can generate explanations 
for the answers, we use the following metrics, which are divided into 
answer evaluation and evidence evaluation.

For answer evaluation, we strictly follow the original evaluation 
script for each subset. Specifically, we use the F1-score (F1) to eval-

uate SQuAD and CMRC 2018. We discard Exact Match (EM) and only 
evaluated F1 for simplicity. Note that, as these datasets are in different 
languages, the evaluation details are slightly different. For RACE+ and 
C3, we use accuracy for evaluation.

For evidence evaluation, we use F1 metrics, as most of the evidence 
spans are quite long, and it is difficult for the machine to extract the 
evidence spans exactly and thus we do not adopt EM. Also, the central 
idea of the evidence is to provide enough information to support the 
answer, so it is proper to adopt F1. Note that we only evaluate the 
correctness of evidence in this metric, regardless of the correctness of 
the answer. Altogether, we also use an overall F1 metric to provide a 
comprehensive evaluation of the system. For each instance, we calculate 
the score of the answer metric and evidence metric. The overall F1 
of each instance is obtained by multiplying both terms, as shown in 
Equation (4).

𝙵𝟷𝚘𝚟𝚎𝚛𝚊𝚕𝚕 = 𝙵𝟷𝚊𝚗𝚜𝚠𝚎𝚛 × 𝙵𝟷𝚎𝚟𝚒𝚍𝚎𝚗𝚌𝚎 (4)

Finally, the overall F1 of all instances is obtained by averaging all 
instance-level F1. The overall F1 reflects the correctness of both the 
answer and its evidence.

5.2. Human performance

Following previous works [3, 4, 5], we also report human perfor-

mance to estimate how well humans perform on this dataset. Following 
[5], we use a cross-validation approach that regards one of the candidates 
as the prediction and treats the rest of the candidates as ground truths. 
Final scores are obtained by averaging all possible combinations.

• SQuAD, CMRC 2018: In these datasets, there are multiple refer-

ences for both answer and evidence, and thus we use the cross-

validation approach for both and obtain their products as instance-

level human performance.

• RACE+, C3: As these datasets have only one reference answer, we 
invite three annotators to answer a random set of 100 questions 
in each set to obtain the averaged human answer performance. 
For the evidence, we directly use the cross-validation approach for 
the selected random set. Similarly, the instance-level human per-

formance is obtained by the product of the answer and evidence 
score.

Note that as the evidence spans are annotated by referring to ei-

ther the answers or additional hints, the actual human performance can 
be lower, and thus, these results should be regarded as ceiling human 
performance roughly. Finally, we average the scores in all instances to 
obtain the final overall human performance. Note that the answers and 
the evidences are not annotated by the same annotator, where the for-

mer is from the original dataset, and the latter is ours.

6. Experiments

6.1. Setups

We use pre-trained language models as the baseline system back-

bones. Specifically, we use BERT-base and BERT-large-wwm [10] for 
English tasks, and MacBERT-base/large [29] for Chinese tasks. We use 
a universal initial learning rate of 3e-5 and iterate two training epochs 
for all tasks. The maximum sequence length is set to 512, and the QA 
length is 128 in all experiments. We use ADAM [30] with weight decay 
optimizer for training. All experiments are performed on a single Cloud 
TPU v2 for base-level PLMs and v3 for large-level PLMs. We set 𝜆 = 0.01
for span-extraction tasks and 𝜆 = 0.1 for multi-choice tasks in the final 
loss function to penalize the evidence pseudo-data training, which we 
found to be effective. Further investigation is discussed in Section 6.3.

6.2. Baseline results

The results are in Table 3, where 5-run maximum scores are re-

ported.

Overall, the best-performing baselines are still far behind the human 
performance, indicating that the proposed dataset is challenging. Addi-

tionally, the gaps in multi-choice MRC subsets are larger than those in 
span-extraction MRC. For all subsets, adding question text for similar-

ity calculation is more effective than only using the predicted answer. 
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Table 3. Baseline results on SQuAD, CMRC 2018, RACE+ , and C3 . B: base, L: large. ‘Sent.’ for ‘sentence’, ‘Ques.’ for ‘question’. 
‘Ans.’, ‘Evi.’, and ‘All’ denote the answer/evidence/overall score, respectively.

System SQuAD (dev) SQuAD (test) CMRC 2018 (dev) CMRC 2018 (test)

Ans. Evi. All Ans. Evi. All Ans. Evi. All Ans. Evi. All

Human Performance 90.8 92.1 83.6 91.3 92.9 84.7 97.7 94.6 92.4 97.9 94.6 92.6

Most Similar Sent. (B) 87.4 81.8 74.5 87.1 85.4 76.1 82.3 71.9 60.1 84.4 62.2 52.9

MSS. w/ Ques. (B) 87.4 81.0 72.9 87.1 84.8 75.6 82.3 76.9 63.9 84.4 69.8 59.9

Predicted Answer Sent. (B) 87.4 84.1 76.4 87.1 89.1 79.6 82.3 78.0 66.8 84.4 69.1 59.8

Pseudo-data Training (B) 87.0 79.5 70.6 88.0 78.6 69.8 81.5 73.2 60.4 85.9 61.3 52.4

Most Similar Sent. (L) 93.0 83.9 79.3 92.3 85.7 80.4 82.8 71.6 60.3 88.6 63.0 55.9

MSS. w/ Ques. (L) 93.0 81.9 77.4 92.3 85.1 79.8 82.8 76.3 63.6 88.6 71.0 63.2

Predicted Answer Sent. (L) 93.0 85.4 81.8 92.3 89.6 83.6 82.8 77.7 66.9 88.6 70.6 63.3

Pseudo-data Training (L) 92.9 80.7 75.6 93.9 80.1 74.8 83.8 73.1 62.7 89.6 62.9 55.3

System RACE+ (dev) RACE+ (test) C3 (dev) C3 (test)

Ans. Evi. All Ans. Evi. All Ans. Evi. All Ans. Evi. All

Human Performance 92.0 92.4 85.4 93.6 90.5 84.4 95.3 95.7 91.1 94.3 97.7 90.0

Most Similar Sent. (B) 62.4 36.6 28.2 59.8 34.4 26.3 68.7 57.7 47.7 66.8 52.2 41.2

MSS. w/ Ques. (B) 62.4 44.5 31.5 59.8 41.8 27.3 68.7 62.3 47.3 66.8 57.4 42.3

Pseudo-data Training (B) 63.6 45.7 31.7 60.1 43.5 27.1 70.9 59.9 43.5 69.0 57.5 40.6

Most Similar Sent. (L) 69.0 37.6 29.9 68.1 36.8 28.9 73.1 59.4 49.9 72.0 52.7 43.9

MSS. w/ Ques. (L) 69.0 48.0 36.8 68.1 42.5 31.3 73.1 63.2 50.9 72.0 58.4 46.0

Pseudo-data Training (L) 69.0 45.9 32.6 70.4 41.3 30.8 76.4 64.3 50.7 74.4 59.9 47.3

For span-extraction MRC, traditional token similarity methods seem to 
be more effective as the answer is already a passage span, and its evi-

dence often lies around its context. In contrast, the pseudo-data training 
approach is more effective in multi-choice MRC, where the options are 
not composed of the passage span, which is not capable of direct map-

ping, and it requires similarity calculation in semantics but not only in 
the token-level calculation.

Improving both answer and evidence prediction does NOT necessar-

ily improve the overall score. For example, in the C3 development set, 
pseudo-data training at a large-level baseline yields better performance 
on both answer and evidence prediction than the others. However, its 
overall score of 50.7 is lower than the best-performing baseline of 50.9. 
After checking the prediction file, we discovered that there are more 
samples that have either better evidence spans for the wrong answer 
prediction or worse evidence spans for correct answer prediction, which 
decreases the overall score.

Another interesting observation is that although pseudo-data train-

ing baselines do not yield better overall scores mostly, we see almost 
consistent improvements in the answer prediction accuracy, such as in 
C3 using large-level PLM (e.g., dev +3.3, test +2.4). This suggests that 
using pseudo evidence helps improve answer prediction, and we ex-

pect there will be another improvement when we use a more effective 
method for extracting high-quality pseudo evidence.

6.3. Answer and evidence balance

To balance the ratio between the answer and evidence loss, we apply 
a lambda term to the evidence loss. To explore the effect of the lambda 
term, we select different 𝜆 ∈ [0, 1] and plot the 5-run average dev per-

formance of each task using base-level PLMs. The results are shown in 
Fig. 3.

Overall, by increasing the lambda term, the evidence score and over-

all score decrease, suggesting that the pseudo-data training cannot be 
regarded as important as the original supervised task training (answer 
prediction), as the pseudo-data is not constructed by the ground truth 
evidence. However, in regard to the answer score, we observe that the 
span-extraction MRC tasks are less sensitive to the lambda term than 
the multi-choice MRC tasks. The optimal lambda value differs in span-

extraction and multi-choice MRC tasks, where SQuAD and CMRC 2018 
show a smaller value than RACE+ and C3. A possible guess is that two 
subtasks (answer extraction and evidence extraction) are the same in 

Table 4. Upper bound performance of evidence F1 on the development 
sets.

SQuAD CMRC 2018 RACE+ C3

Most Similar Sent. w/ Ques. 81.9 76.3 48.0 63.2

Predicted Answer Sent. 85.4 77.7 - -

Ground Truth Answer Sent. 88.2 82.1 49.9 66.8

Ground Truth Evidence Sent. 91.6 85.2 86.9 89.1

Human Performance 92.1 94.6 92.4 95.7

span-extraction MRC, and thus, the evidence extraction task benefits 
from the learning of answer extraction. However, as the evidence labels 
are not accurate enough, increasing the lambda term hurts the learning 
of evidence extraction.

6.4. Upper bound for evidence extraction

In this section, we analyze the possible steps to achieve better evi-

dence extraction performance. In addition to the ‘Most Similar Sentence 
with Question’ and ‘Predicted Answer Sentence’ (PA Sent.), we also 
provide two additional baselines for large-level PLMs. We extract the 
sentence that contains the ground truth answer (GA Sent.) and evidence 
(GE Sent.) to measure the upper bounds for those systems that only ex-

tract sentence-level evidence. The results are shown in Table 4.

As can be seen, the PA-GA and GA-GE gaps in span-extraction MRC 
are very small (approximately 3%~5%), suggesting that the current sys-

tem is about to reach the ceiling performance when only using sentence-

level evidence extraction. In contrast, in multi-choice MRC, we see a 
large gap between GA and GE, indicating that only using the answer 
sentence is not enough to achieve strong evidence extraction perfor-

mance. The gap between GE and human performance indicates the 
gains from expanding sentence-level evidence to a free-form evidence 
span. In addition to the SQuAD task, the others yield a 5.5%~9.4% gap, 
which demonstrates that finding the exact evidence span in these tasks 
can still achieve a decent improvement.

7. Conclusion

In this paper, we propose a comprehensive benchmark for evaluat-

ing the explainability of MRC systems. The proposed ExpMRC bench-

mark contains four datasets, including SQuAD, CMRC 2018, RACE+, 
C3, covering span-extraction MRC and multiple-choice MRC in both En-
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Fig. 3. Effect of the lambda term in the evidence loss. X-axis: lambda, Y-axis: average F1.

glish and Chinese. ExpMRC aims to evaluate the MRC system to give not 
only correct predictions on the final answer but also extract correct evi-

dence for the answer. We set up several baseline systems to thoroughly 
evaluate the difficulties of ExpMRC. The experimental results show that 
both traditional and state-of-the-art pre-trained language models still 
underperform human performance by a large margin on most of the 
subsets, indicating that more efforts should be made on designing an 
effective approach for evidence extraction. We hope the release of the 
dataset will further accelerate the research on the explainability and 
interpretability of MRC systems, especially for the unsupervised ap-

proaches.
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