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ABSTRACT

Mixtral, a representative sparse mixture of experts (SMoE) language model, has
received significant attention due to its unique model design and superior perfor-
mance. Based on Mixtral-8x7B-v0.1, in this paper, we propose Chinese-Mixtral
and Chinese-Mixtral-Instruct with improved Chinese language abilities by adopt-
ing further pre-training and instruction fine-tuning. Experimental results show
that our Chinese-Mixtral and Chinese-Mixtral-Instruct successfully improve Chi-
nese understanding and generation performance while retaining the original En-
glish abilities. Then, we discuss several key questions when performing lan-
guage adaptation on large language models, including the necessity of extend-
ing the language-specific vocabulary and the choice of the initialization model
(foundation model v.s. instruction model), by providing empirical results and
analysis. We also present the visualizations of each expert to examine their
importance on downstream tasks. Our resources are publicly available through
https://github.com/ymcui/Chinese-Mixtral.

1 INTRODUCTION

Natural Language Processing (NLP) has been revolutionized by introducing Large Language Mod-
els (LLMs) like the GPT series, which excel in generating human-like text. These advancements,
particularly with the development of ChatGPT (OpenAI, 2022) and its successor, GPT-4 (OpenAI,
2023), have showcased not only remarkable achievements in language comprehension and genera-
tion but also in multi-modal and reasoning tasks, pushing the boundaries of what is possible in NLP
and stirring interest in Artificial General Intelligence (AGI). Despite their transformative impact and
the broadening of research and applications they have enabled, the proprietary nature and the signif-
icant computational resources required for these models pose challenges, limiting accessibility and
hindering further innovation in the field by the broader research community.

To further promote open research, various open-source large language models have been proposed,
and consequently related open-source community embraced significant advancement in recent days.
Among various open-source LLMs, LLaMA (Touvron et al., 2023) and Llama-2 (Touvron et al.,
2023) have made unnegligible contributions to the research community, resulting in massive vari-
ants, such as Alpaca (Taori et al., 2023), Chinese-LLaMA (Cui et al., 2023), etc. Like GPT-2,
LLaMA also adopts a decoder-only transformer architecture (Vaswani et al., 2017), which has be-
come a main-stream architecture for LLMs.

Mixtral (Jiang et al., 2024), on the other hand, is a sparse mixture of experts (SMoE) model, which
is different from LLaMA series. Mixtral’s architecture allows for efficient parameter utilization by
employing a decoder-only setup where a router network selects two out of eight distinct groups
of parameters (the “experts”) for processing each token, combining their outputs additively. This
approach not only increases model parameters efficiently but also optimizes cost and latency by
using only a fraction of parameters per token, enabling faster inference at lower batch sizes and
higher throughput at larger ones. Mixtral exhibits strong performances on various benchmarks,
surpassing Llama-2 70B and GPT-3.5, while Mixtral only activates 13B parameters at the inference
stage.
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Though LLaMA series and Mixtral model exhibit excellent performance in various benchmarks,
they mainly focus on processing English, and consequently, their support for other languages is lim-
ited. Following our previous attempt to adapt LLaMA and Llama-2 series into Chinese, in this paper,
we propose Chinese-Mixtral and Chinese-Mixtral-Instruct, which are adapted from Mixtral-8x7B-
v0.1, by performing continual training on Chinese text and instruction data. To test the effectiveness
of the proposed Chinese Mixtral models, we conduct various experiments, including automated
benchmarks, human evaluations, etc. We also provide several discussions and visualizations of the
proposed model, which may shed light upon future research on creating effective fine-tuned LLMs.

The contributions of this paper can be summarized as follows.

• We propose Chinese-Mixtral and Chinese-Mixtral-Instruct, which are further tuned on Mixtral-
8x7B-v0.1 using QLoRA, and their effectiveness is validated by various experimental results,
including automated benchmarks and human evaluation.

• We actively discuss several key questions by presenting point-to-point empirical experiments,
including the necessity of extending vocabulary and the choice of the starting model, which
may provide insights into creating better fine-tuned LLMs.

• We present various visualizations of each expert and discuss their roles in different downstream
tasks, which may help better understand Mixtral.

• We have made our resources publicly available through GitHub, enabling open research and
collaboration in our open-source community.

2 CHINESE MIXTRAL

Our Chinese Mixtral models use exactly the same architecture as the original one without the vocab-
ulary extension. We briefly introduce the architecture and training method of Mixtral. An overview
of the Mixtral model is depicted in Figure 1.
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Figure 1: Architecture of Mixtral.

Mixtral is built upon the transformer model (Vaswani et al., 2017), where the feedforward layer is
substituted by Sparse Mixture-of-Expert (SMoE). The SMoE layer consists of 8 experts, and each of
them is a feedforward layer. A gating layer G(x) is applied to select the most important two experts,
as calculated by Equation 1. It is worth noting that the SMoE layer is applied in a token-level
manner, where each token will have different combinations of experts.

G(x) = Norm(Top2(Softmax(x ·Wg))),Wg ∈ Rd×8 (1)

The Norm(·) is the normalization operation, where each element is divided by their sum. Note that
the Equation 1 is slightly different from the original paper’s, where we mainly follow the actual

2



Pre-print

implementation here.1 Finally, the output of the SMoE layer is obtained by the weighted sum of the
corresponding Top-2 experts, where the SwiGLU architecture (Shazeer, 2020) is adopted in Mixtral
for each expert.

y =

n−1∑
i=0

G(x)i · SwiGLUi(x) (2)

In the training phase, Mixtral applies additional auxiliary load balancing loss (as in Fedus et al.
(2022)) along with the loss of causal LM. The auxiliary load balancing loss aims to penalize the
cases where the routing between experts is extremely unbalanced. Given a batch size of B with T
tokens, the auxiliary loss is formulated as

Laux = 8 ·
n−1∑
i=0

fi · Pi, (3)

fi =
1

T

∑
x∈B

1{argmax p(x) = i}, Pi =
1

T

∑
x∈B

pi(x), (4)

where fi is the fraction of tokens dispatched to expert i, and Pi is the fraction of the router probability
for expert i. The final training loss is shown in Equation 5.

L = Lclm + αLaux (5)

3 EXPERIMENTAL SETUPS

We largely follow the experimental setting as in our previous work (Cui et al., 2023). Detailed
settings are listed in Table 1. Chinese-Mixtral was initialized by Mixtral-8x7B-v0.1 and was further
pre-trained using 20GB general Chinese corpus, which is identical to our Chinese-LLaMA base
series. Chinese-Mixtral-Instruct was built on Chinese-Mixtral and was further fine-tuned using 5M
Chinese instruction data, which is identical to our Chinese-Alpaca-2 series. Unlike our previous
attempt, in this paper, we did not apply vocabulary extension to the original tokenizer, i.e., we
directly use the original Mixtral tokenizer. Further discussions can be found in Section 5.1.

All models are trained with the QLoRA method (Dettmers et al., 2024), where the embedding and
LM head are fully trained (without using LoRA). We employ the AdamW optimizer (Loshchilov &
Hutter, 2019) with a peak learning rate of 1e-4 with cosine scheduler and 5% warm-up ratio. The
scaling factor α of the auxiliary loss in Equation 5 is set to 0.02 (default value in original Mix-
tral). The implementation was done by using PEFT2 and transformers3. We also utilize DeepSpeed
(Rasley et al., 2020) to optimize memory efficiency during the training process. All models are
trained on 48 A40 GPUs (48GB VRAM), where the pre-training takes one epoch and the SFT takes
three epochs. The total batch size is 1152.

Though we use the context size of 1024 during the training phase, we are able to retain the original
Mixtral context ability (i.e., 32K context length). Moreover, by performing the quantitative analysis
(Section 5.3), we are surprised to see that the Mixtral model series (including our Chinese Mixtral
models) are capable of handling way longer context length (up to 128K).

4 EXPERIMENTAL RESULTS

In this section, we present experimental results on various automated benchmarks and chatbot arena
(i.e., human evaluation). Note that we mainly compare our results to Mixtral-8x7B-v0.1, from which
our models were trained. We also list Mixtral-8x7B-Instruct-v0.1 for comparison, though it is not
used in our Chinese-Mixtral and Chinese-Mixtral-Instruct.

1https://github.com/huggingface/transformers/blob/main/src/
transformers/models/mixtral/modeling_mixtral.py

2https://github.com/huggingface/peft
3https://github.com/huggingface/transformers
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Table 1: Hyperparameters and training details of Chinese-Mixtral and Chinese-Mixtral-Instruct.

Settings Chinese-Mixtral Chinese-Mixtral-Instruct
Trained From Mixtral-8x7B-v0.1 Chinese-Mixtral
Training Data 20GB raw text (≈7B tokens) 5M Instruction SFT
Training Epochs 1 3
Layer # 32
Total Experts # 8
Used Experts # 2
Hidden Size 4096
Context Length 32768
Vocab Size 32000
Training Method QLoRA + Full training on embedding and LM head
LoRA Rank 64
LoRA Alpha 128
LoRA Applied to QKVO + W123 + Gate

4.1 C-EVAL

C-Eval (Huang et al., 2023) is a multi-choice question answering dataset, which mainly covers
four categories: STEM, Social, Humanities, and Others, consisting of nearly 14K samples for 52
disciplines. Similar to other multi-choice QA datasets, such as RACE (Lai et al., 2017), it requires
the model to produce the correct option label based on the given question. We tested our model
on the validation split (1,346 samples) and test split (12,342 samples), where the test scores are
obtained by submitting models’ prediction files to the official leaderboard. The results are shown
in Table 2. As we can see, the Mixtral series performs significantly better than other 13B models.
Chinese-Mixtral performs slightly worse than Mixtral-8x7B-v0.1. However, after instruction fine-
tuning, Chinese-Mixtral-Instruct brings significant improvements over Chinese-Mixtral, and even
surpasses the original Mixtral-8x7B-Instruct-v0.1.

Table 2: Results on C-Eval.

Model Valid Set Test Set
zero-shot 5-shot zero-shot 5-shot

Chinese-LLaMA-2-13B 40.6 42.7 38.0 41.6
Chinese-Alpaca-2-13B 44.3 45.9 42.6 44.0
Mixtral-8x7B-v0.1 47.3 54.6 46.1 50.3
Mixtral-8x7B-Instruct-v0.1 51.6 54.0 48.7 50.7

Chinese-Mixtral 45.8 54.2 43.1 49.1
Chinese-Mixtral-Instruct 51.7 55.0 50.0 51.5

4.2 CMMLU

CMMLU (Li et al., 2023) is another comprehensive Chinese evaluation dataset specifically designed
to assess the knowledge and reasoning ability of language models in Chinese contexts. CMMLU
covers 67 topics, from basic subjects to advanced professional levels, with a total of 11.5K multiple-
choice questions. The results are shown in Table 3. Similar to the results in C-Eval, Chinese-Mixtral
performs worse than the original Mixtral-8x7B-v0.1, and the Chinese-Mixtral-Instruct brings sig-
nificant improvement, especially in the zero-shot settings (from 42.5 to 50.0).
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Table 3: Results on CMMLU.

Model Test (zero-shot) Test (5-shot)
Chinese-LLaMA-2-13B 38.9 42.5
Chinese-Alpaca-2-13B 43.2 45.5
Mixtral-8x7B-v0.1 44.3 51.6
Mixtral-8x7B-Instruct-v0.1 48.2 51.6

Chinese-Mixtral 42.5 51.0
Chinese-Mixtral-Instruct 50.0 53.0

4.3 OPEN LLM LEADERBOARD

We also submit our models on Hugging Face Open LLM Leaderboard4. The leaderboard contains
the following benchmarks (in English) to comprehensively test large language model abilities: ARC
(Clark et al., 2018), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021), TruthfulQA
(Lin et al., 2022), WinoGrande (Sakaguchi et al., 2020), and GSM8K (Cobbe et al., 2021). The
results are shown in Table 4.

Overall, excluding GSM8K, our Chinese-Mixtral performs on par to the original Mixtral-8x7B-
v0.1, which suggests that a large portion of English abilities are preserved. On top of that, Chinese-
Mixtral-Instruct further improves performance, especially for MMLU, TruthfulQA, and GSM8K.
We noticed a disastrous performance loss on GSM8K for Chinese-Mixtral, while we did not observe
such phenomena on other tasks. With an initial investigation, we discover that GSM8K requires to
extract the answer after “####” tokens, which is significantly different from other tasks. In this
context, our Chinese-Mixtral failed to follow the instruction, and the output text does not contain
any “####” tokens, consequently resulting in empty answers. However, as we can see, Chinese-
Mixtral-Instrct recovered GSM8K performance to a reasonable level.

This suggests that performing additional pre-training on LLM in other languages will result in unex-
pected performance loss on some downstream tasks, especially those requiring instruction-following
abilities. Such deficiency can be alleviated by adopting further instruction fine-tuning.

Table 4: Results on Open LLM Leaderboard. HellaS: HellaSwag, TQA: TruthfulQA, WinoG:
WinoGrande.

Model ARC HellaS MMLU TQA WinoG GSM8K Average

Chinese-LLaMA-2-13B 55.80 79.53 53.01 38.24 75.69 3.94 51.04
Chinese-Alpaca-2-13B 58.70 79.76 55.12 50.22 75.61 25.02 57.41
Mixtral-8x7B-v0.1 66.38 86.46 71.88 46.81 81.69 57.62 68.47
Mixtral-8x7B-Instruct-v0.1 70.14 87.55 71.40 64.98 81.06 61.11 72.70

Chinese-Mixtral 67.58 85.34 70.38 46.86 82.00 0.00 58.69
Chinese-Mixtral-Instruct 67.75 85.67 71.53 57.46 83.11 55.65 70.19

4.4 LONGBENCH

LongBench (Bai et al., 2023) is a benchmark for evaluating the long-text understanding abilities of
large language models. LongBench consists of 6 categories and 20 different tasks, most of which
have an average length of 5K-15K words, totaling about 4.75K test items. We test our models on
Chinese subsets and coding tasks. The results are shown in Table 5. As we can see, Chinese-
Mixtral performs poorly compared to its initialization model, i.e., Mixtral-8x7B-v0.1, especially on
summarization, code, and synthetic tasks. However, after instruction fine-tuning, Chinese-Mixtral-
Instruct performs significantly better than both models. For example, in synthetic tasks, Chinese-
Mixtral-Instruct scores 89.5, which is better than Chinese-Mixtral (14.0) and Mixtral-8x7B-v0.1

4https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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(83.5). This demonstrates that though pre-training on different languages will temporarily harm
the performance of downstream tasks, these issues will be significantly alleviated through proper
instruction fine-tuning. We also noticed that our Chinese-Mixtral-Instruct still leg behind the original
Mixtral-8x7B-Instrct-v0.1, which is further trained on Mixtral-8x7B-v0.1 using instruction fine-
tuning and direct preference optimization (DPO) (Rafailov et al., 2024). In the future, we will try
to also apply DPO on our Chinese-Mixtral-Instruct to see if it can receive additional performance
gains.

Table 5: Results on LongBench (Chinese + code tasks). S-QA: Single-doc QA, M-QA: Multi-doc
QA, Summ: Summarization, FS-Learn: Few-shot Learning, Code: Code Completion, Synthetic:
Synthetic Tasks.

Model S-QA M-QA Summ FS-Learn Code Synthetic Average

Chinese-LLaMA-2-7B-64K 27.2 16.4 6.5 33.0 7.8 5.0 16.0
Chinese-Alpaca-2-7B-64K 44.7 28.1 14.4 39.0 44.6 5.0 29.3
Chinese-LLaMA-2-13B-16K 36.7 17.7 3.1 29.8 13.8 3.0 17.3
Chinese-Alpaca-2-13B-16K 47.9 26.7 13.0 22.3 46.6 21.5 29.7
Mixtral-8x7B-v0.1 35.5 9.5 16.4 46.5 57.2 83.5 41.4
Mixtral-8x7B-Instruct-v0.1 56.5 35.7 15.4 46.0 63.6 98.0 52.5

Chinese-Mixtral 32.0 23.7 0.4 42.5 27.4 14.0 23.3
Chinese-Mixtral-Instruct 50.3 34.2 16.4 42.0 56.1 89.5 48.1

4.5 CHINESE LLM CHATBOT ARENA

In order to test the generation quality, we set up an online chatbot arena5 based on Gradio (Abid et al.,
2019), which contains the outputs of different LLMs w.r.t various instructions. The instruction set
contains 360 samples, covering different topics and tasks, such as question answering, math and
reasoning, culture, translation, ethics, etc. Each LLM retains three outputs for each instruction to
preserve the diversity and reduce the randomness. During human rating, two random anonymous
LLMs will be shown w.r.t. the same instruction, and the user should rate which one is better (or
equally better/worse). After rating, the user will be notified of the identity of the LLMs. The user
interface is shown in Figure 2, and the results are shown in Table 6. There are two metrics provided:
1) win rate (excluding ties); 2) Elo rating (the initial rating is 1500). As we can see Chinese-Mixtral-
Instruct yields the best performance on both metrics. We also provide the pair-wise winning rate and
the battle count in Figure 3.

Table 6: Results of Chinese LLM chatbot arena (as of Feb 27, 2024).

Model Win Rate (no ties) ↓ Elo Rating
Chinese-Mixtral-Instruct 57.36% 1571
Chinese-Alpaca-2-7B-RLHF 56.45% 1474
Chinese-Alpaca-2-13B 56.19% 1451
Chinese-Alpaca-2-13B-16K 56.16% 1496
Chinese-Alpaca-2-7B-16K 52.25% 1563
Chinese-Alpaca-2-7B 48.72% 1497
Chinese-Alpaca-2-7B-64K 48.44% 1536
Chinese-Alpaca-Pro-33B 47.10% 1515
Chinese-Alpaca-Pro-7B 44.55% 1437
Chinese-Alpaca-Pro-13B 43.02% 1455

5http://llm-arena.ymcui.com
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Figure 2: Interface of Chinese LLM chatbot arena.

(a) Winning rate (excluding ties) (b) Battle count

Figure 3: Results of pair-wise winning rate and battle count in Chinese LLM chatbot arena.

5 DISCUSSION

5.1 EFFECT OF EXTENDING CHINESE VOCABULARY

Extending vocabulary with language-specific entries has become a traditional routine of adapting
English-based LLMs to other languages. One of the main advantages is that vocabulary extension
could significantly improve encoding efficiency in the target language. For example, when adapting
LLaMA/Mixtral to Chinese, the original vocabulary contains only very few Chinese characters as
shown in Table 7, where the Chinese characters only take up 2.2% and 4.6% respectively6.

We follow our previous attempt (Cui et al., 2023) to the Mixtral model to add additional Chinese
tokens into the original Mixtral tokenizer. Similarly, we use the pre-training data to train a Chinese
tokenizer and then merge it with the original Mixtral vocabulary by removing the duplicate entries.

6We roughly identify Chinese characters using the following Unicode range: 1) basic CJK unified
ideographs (4E00-9FFF); 2) CJK unified ideographs extension A (3400-4DBF); 3) CJK unified ideographs
extension B (20000-2A6DF).
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As we can see from Table 7, the proportion of Chinese tokens in the vocabulary grows significantly,
from 4.6% to 44.6%.

To test the encoding efficiencies, we use different tokenizers to tokenize the Chinese portion of
Wikipedia data (wikipedia-zh-20231101)7, where the dataset size is about 1.7GB. We can see that
after using Chinese tokenizers (Chinese-LLaMA-2 and Chinese-Mixtral-ext), the number of en-
coded tokens drops significantly, resulting in a 43.9% and 32.6% decline respectively, which means
that the encoding efficiency significantly improved.

Table 7: Encoding results of Wikipedia-zh-20231101 using different tokenizers. “-ext” means the
Chinese vocabulary extended tokenizer.

Tokenizer All / Zh Vocab # Encoded Tokens #
Llama-2 32,000 / 700 (2.2%) 1,432,314,226
Chinese-LLaMA-2 55,296 / 23,933 (43.3%) 803,138,206 (-43.9%↓)

Chinese-Mixtral 32,000 / 1,459 (4.6%) 1,179,694,379
Chinese-Mixtral-ext 55,296 / 24,644 (44.6%) 795,217,098 (-32.6%↓)

However, leaving encoding efficiency aside, does vocabulary extension also improve model per-
formance? In this paper, we provide a point-to-point comparison on this matter, which was not
well-studied in the previous literature. Using the extended Mixtral tokenizer, we use exactly the
same training recipe to train Chinese-Mixtral-ext (foundation model) and Chinese-Mixtral-Instruct-
ext (instruction model). The embeddings of the newly added tokens are initialized with the average
of their subtokens (using the original tokenizer), which we found to be more effective than random
initialization. After obtaining these models, we test their performances on C-Eval, CMMLU, and
MMLU datasets to see if the extended vocabulary could improve performance on downstream tasks.
The results are shown in Table 8.

Table 8: Results of Chinese vocabulary extension. 5-shot results are reported for all experiments.
Differences to the counterparts are shown in parentheses.

Model Vocab Size C-Eval CMMLU MMLU
Chinese-Mixtral 32,000 54.2 51.0 67.1
Chinese-Mixtral-Instruct 32,000 55.0 53.0 69.6

Chinese-Mixtral-ext 55,296 48.9 (-5.3↓) 46.5 (-4.5↓) 65.8 (-1.3↓)

Chinese-Mixtral-Instruct-ext 55,296 52.5 (-2.5↓) 51.7 (-1.3↓) 68.6 (-1.0↓)

Unfortunately, vocabulary extension does not bring performance improvements on both Chinese
and English tasks. For example, vocabulary-extended Chinese-Mixtral (i.e., Chinese-Mixtral-ext)
results in a significant drop in Chinese tasks, where 5.3 (48.9 v.s. 54.2) and 4.5 (46.5 v.s. 51.0)
performance drops can be seen for C-Eval and CMMLU, respectively. Compared to Chinese tasks,
we also observe a noticeable performance drop in MMLU, though the gap is not as big as in Chinese
tasks. After applying further instruction fine-tuning, Chinese-Mixtral-Instruct-ext obtains significant
improvements in all tasks. However, compared to Chinese-Mixtral-Instruct, each task still has a
performance gap.

These experimental results reveal that vocabulary extension might not be a necessity when adapting
English-based LLMs to other languages. Though it can accelerate the encoding efficiency, it might
not bring advantages in downstream tasks compared to the one that uses the original tokenizer.

7https://huggingface.co/datasets/wikimedia/wikipedia/tree/main/
20231101.zh
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5.2 EFFECT OF THE INITIALIZATION MODEL

When performing language ability transfer or further fine-tuning, we often encounter one key ques-
tion: should I initialize with the foundation model or instruction model?

For example, in terms of Mixtral model, we can either choose to train from Mixtral-8x7B-v0.1
or Mixtral-8x7B-Instruct-v0.1. To investigate the question above, we conduct additional empir-
ical experiments on Mixtral-8x7B-Instruct-v0.1 using exactly the same training setting as in our
Chinese-Mixtral and Chinese-Mixtral-Instruct, which are trained on Mixtral-8x7B-v0.1. The results
are shown in Table 9. As we can see that,

• Mixtral-8x7B-Instruct-v0.1 performs significantly better than Mixtral-8x7B-v0.1 in
MMLU but not in C-Eval and CMMLU, which demonstrates that supervised fine-tuning on
English instruction data can bring additional improvements on English downstream tasks,
but it will add little benefits to Chinese tasks.

• After training with Chinese text on Mixtral-8x7B-Instruct-v0.1, we noticed significant
drops in all downstream tasks compared to those experiments on Mixtral-8x7B-v0.1. By
continuing instruction fine-tuning, the performances of downstream tasks improved, but
the overall performances are still behind Chinese-Mixtral-Instruct.

The above observations reveal that it is preferred to start with the foundation model (Mixtral-8x7B-
v0.1) rather than the instruction model (Mixtral-8x7B-Instruct-v0.1) when performing language
ability transfer.

Table 9: Results of using different starting model. 5-shot results are reported for all experiments.
Differences to the counterparts are shown in parentheses.

Model C-Eval CMMLU MMLU
Mixtral-8x7B-v0.1 54.6 51.6 69.0
+ pre-training (Chinese-Mixtral) 54.2 51.0 67.1
++ SFT (Chinese-Mixtral-Instruct) 55.0 53.0 69.6

Mixtral-8x7B-Instruct-v0.1 54.0 (-0.6↓) 51.6 (0.0) 70.4 (+1.4↑)

+ pre-training 52.5 (-1.7↓) 50.0 (-1.0↓) 66.1 (-1.0↓)

++ SFT 52.7 (-2.3↓) 51.7 (-1.3↓) 67.6 (-2.0↓)

5.3 EFFECT OF LONG CONTEXT ABILITIES

The original paper of Mixtral (Jiang et al., 2024) reports that the Mixtral supports a context size
of 32,768 (32K). However, we wonder whether it can support longer context beyond 32K. We plot
the PPL under different context lengths on the pre-training validation set. As we did not perform
vocabulary extension, the perplexities of Mixtral-8x7B-v0.1, Chinese-Mixtral, and Chinese-Mixtral-
Instruct are directly comparable. Although PPL can not be regarded as a comprehensive metric to
evaluate LLMs, it is a general starting point to test LLM’s basic abilities. The results are shown in
Figure 4. As we can see, the perplexities continually go down when context lengths grow, and the
optimal PPLs are in 48K but not 32K. We are also surprised to see that these models still exhibit
decent PPLs beyond 48K (even in 128K). This demonstrates that Mixtral series has a good long-
context generalization ability, which may not require additional long-context tuning (such as PI
(Chen et al., 2023) and YaRN (Peng et al., 2023), etc.) to support longer context.

6 VISUALIZATIONS

In this section, we analyze the importance of each expert in each layer by performing visualizations
on Chinese-Mixtral.8 Following the visualization method in Cui et al. (2022), we first disable a

8We also conduct visualizations on Chinese-Mixtral-Instruct, and the resulting figures are similar. We only
show the visualizations of Chinese-Mixtral here for simplicity.
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Figure 4: Perplexities under different context lengths (on validation set).

single expert (i.e., never be chosen by the router) and perform inference on downstream tasks. The
performance difference to the Chinese-Mixtral is visualized. That is

cell value = performance of disabling current expert - baseline performance.

In this way, we can understand whether a particular expert is important to the overall performance.
We mainly visualize C-Eval performance (Figure 5(a)) and PPL on a small held-out set (Figure
5(b)). We have the following observations.

• In Figure 5(a), removing experts in lower layers has a larger impact (shown in blue, as
they are lower than the baseline performance). In the upper layers, disabling some experts
results in a better performance (shown in red), such as expert 7 in layer 27, etc.

• In Figure 5(b), removing experts in lower layers also has a significant impact, similar to the
ones in C-Eval. However, we also observe that some of the experts in the upper layer also
have great impacts, such as expert 0 in layer 29. The experts in the middle layers are not
as important as the others. Also, in contrast to the results of C-Eval, we did not observe
disabling any expert will bring a positive effect (as there is no cell marked in blue, i.e.,
lower PPL).

This observation suggests that the experts in the lower layers are the most important ones. The
importance of experts in the middle and upper layers varies in different tasks.

By comparing Figure 5(a) and 5(b), we notice that expert 3 in layer 1 is the most important one
in both tasks. To further investigate the most important expert (expert 3 in layer 1), we also plot
the token throughput rate in Figure 5(c) and 5(d) for C-Eval and PPL test, respectively. The token
throughput rate is measured by calculating the total token number of passing a specific expert, and
these numbers are then normalized in each layer. To our surprise, we find that expert 3 is not the
expert that processes the most tokens in layer 1 (as shown in lighter colors than the others in the
same layer), which is identical in both tasks. This observation suggests that the processed token
number might not be a direct indicator of measuring the expert importance.

7 CONCLUSION

In this paper, we propose two Chinese-adapted Mixtral models, namely Chinese-Mixtral and
Chinese-Mixtral-Instruct. Different from our previous attempt on Chinese-LLaMA, we directly per-
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(c) C-Eval throughput
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Figure 5: Visualizations of each expert in each layer.

form Chinese pre-training and instruction fine-tuning on Mixtral (Mixtral-8x7B-v0.1) without ex-
tending the vocabulary with additional Chinese tokens. The experimental results show that Chinese-
Mixtral and Chinese-Mixtral bring significant improvements in Chinese downstream tasks over the
original Mixtral, and some of the results are even better than the original Mixtral-Instruct. We
discover that though extending Chinese vocabulary may bring notable improvements on encoding
efficiency but it may not necessarily bring performance improvements on downstream tasks. We
also examine the effect of the initialization model and long context abilities, which might be useful
in future work. We have open-sourced our models and code to further facilitate open research and
collaborations in our research community.
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