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ABSTRACT

Large Language Models (LLMs), such as ChatGPT and GPT-4, have dramatically
transformed natural language processing research and shown promising strides
towards Artificial General Intelligence (AGI). Nonetheless, the high costs associ-
ated with training and deploying LLMs present substantial obstacles to transpar-
ent, accessible academic research. While several large language models, such as
LLaMA, have been open-sourced by the community, these predominantly focus
on English corpora, limiting their usefulness for other languages. In this paper,
we propose a method to augment LLaMA with capabilities for understanding and
generating Chinese text and its ability to follow instructions. We achieve this by
extending LLaMA’s existing vocabulary with an additional 20,000 Chinese to-
kens, thereby improving its encoding efficiency and semantic understanding of
Chinese. We further incorporate secondary pre-training using Chinese data and
fine-tune the model with Chinese instruction datasets, significantly enhancing the
model’s ability to comprehend and execute instructions. Our experimental results
indicate that the newly proposed model markedly enhances the original LLaMA’s
proficiency in understanding and generating Chinese content. Additionally, the
results on the C-Eval dataset yield competitive performance among the models
with several times the size of ours. We have made our pre-trained models, train-
ing scripts, and other resources available through GitHub, fostering open research
for our community.12

1 INTRODUCTION

Natural language processing (NLP) field has witnessed a substantial paradigm shift with the advent
of Large Language Models (LLMs). These models, distinguished by their considerable size and
comprehensive training data, have demonstrated extraordinary abilities in comprehending and pro-
ducing human-like text. In contrast to pre-trained language models dedicated to text understanding,
such as BERT (Devlin et al., 2019), the GPT series (Radford et al., 2018) accentuates text generation,
positioning them as more suitable platforms for creativity compared to their counterparts. Notably,
the latest members of the GPT family, namely ChatGPT and GPT-4, have garnered significant atten-
tion, establishing themselves as leading examples in this rapidly evolving field.

ChatGPT (OpenAI, 2022), evolved from InstructGPT (Ouyang et al., 2022), serves as an advanced
conversational AI model capable of conducting context-aware, human-like interactions. Its success
set the stage for the development of GPT-4 (OpenAI, 2023), a more sophisticated LLM, demonstrat-
ing even greater potential in natural language understanding, generation, and various NLP tasks,
especially for its multi-modal and reasoning abilities. These models have catalyzed new research
directions and applications, intensifying interest in exploring the potential of Artificial General In-
telligence (AGI). Exhibiting impressive performance across multiple benchmarks, they have also
demonstrated capabilities for few-shot learning and adaptability to new tasks, significantly driving
the expansion of NLP research. Consequently, they have inspired both researchers and industry pro-
fessionals to further harness their potential across a wide array of applications, including sentiment
analysis, machine translation, question-answering systems, and more.

∗Equal contributions.
1Chinese LLaMA series: https://github.com/ymcui/Chinese-LLaMA-Alpaca
2Chinese Llama-2 series: https://github.com/ymcui/Chinese-LLaMA-Alpaca-2
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Figure 1: Overview of the proposed Chinese LLaMA and Chinese Alpaca models (based on
Meta’s LLaMA and Llama-2). Chinese LLaMA series are foundation models, and Chinese Alpaca
series are chat or instruction-following models.

However, as impactful as LLMs have been, their implementation comes with inherent limitations
that hamper transparent and open research. A major concern is their proprietary nature, which
restricts access to the models, thus inhibiting the broader research community’s ability to build upon
their successes. Furthermore, the vast computational resources necessary for training and deploying
these models present a challenge for researchers with limited resources, further compounding the
accessibility problem.

To tackle these limitations, the NLP research community has gravitated towards open-source alter-
natives to promote greater transparency and collaboration. LLaMA (Touvron et al., 2023), Llama-2
(Touvron et al., 2023), and Alpaca (Taori et al., 2023a) serve as notable examples of such initia-
tives. These open-source LLMs are intended to facilitate academic research and accelerate progress
within the NLP field. The aim of open-sourcing these models is to foster an environment conducive
to further advancements in model development, fine-tuning, and evaluation, ultimately leading to
the creation of robust, capable LLMs applicable to a wide variety of uses.

Despite the considerable strides made by LLaMA and Alpaca in NLP, they exhibit inherent limita-
tions concerning native support for Chinese language tasks. Their vocabularies contain only a few
hundred Chinese tokens, substantially hindering their efficiency in encoding and decoding Chinese
text. Building on our previous work with the Chinese BERT series (Cui et al., 2021) and Chinese
minority-oriented multilingual pre-trained models (Yang et al., 2022), in this technical report, we
propose the development of Chinese LLaMA and Alpaca models with enhanced capabilities for
understanding and generating Chinese content. We extend the original LLaMA’s vocabulary with
an additional 20,000 Chinese tokens, significantly improving its proficiency in processing and gen-
erating Chinese text. To ensure efficient training and deployment of these models, we employ the
Low-Rank Adaptation (LoRA) approach (Hu et al., 2021), enabling us to train and fine-tune the
models without excessive computational costs. We anticipate our preliminary study to enhance the
Chinese understanding and generation capabilities of LLaMA and Alpaca serves as a foundation
for researchers aiming to adapt these models to other languages. By showcasing the feasibility and
effectiveness of our approach, we offer insights and methodologies that can be employed to extend
vocabularies and improve the performance of LLaMA and Alpaca models in various languages. An
overview of the proposed models is depicted in Figure 1.
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In summary, the contributions of this technical report are as follows:

• We enhance the encoding and decoding efficiency of the Chinese language and improve
LLaMA’s Chinese understanding ability by extending the original LLaMA’s vocabulary with
an additional 20,000 Chinese tokens.

• We employ the Low-Rank Adaptation (LoRA) approach to facilitate efficient training and de-
ployment of the Chinese LLaMA and Alpaca models, enabling researchers to work with these
models without incurring excessive computational costs.

• We evaluate the performance of the proposed LLaMA and Alpaca models in instruction-
following tasks and natural language understanding tasks, thereby demonstrating substantial
improvements over their original counterparts in the context of Chinese language tasks.

• We make the resources and findings of our study publicly available, fostering further research
and collaboration in the NLP community and encouraging the adaptation of LLaMA and Al-
paca models to other languages.

2 CHINESE LLAMA AND CHINESE ALPACA

2.1 BACKGROUND

LLaMA (Touvron et al., 2023) is a foundational, decoder-only large language model built upon the
transformer architecture (Vaswani et al., 2017). Similar to the GPT series and other transformer-
based LLMs, LLaMA consists of an embedding layer, multiple transformer blocks, and a language
model head. LLaMA also incorporates improvements utilized in different models, such as pre-
normalization (Zhang & Sennrich, 2019), SwiGLU activation (Shazeer, 2020), and rotary embed-
dings (Su et al., 2021). LLaMA is available in four different model sizes: 7B, 13B, 33B, and 65B.

LLaMA has been pre-trained with a standard language modeling task (see Section 2.4) using a
mix of publicly available sources, such as crawled web pages, books, Wikipedia, and preprint pa-
pers. Experimental findings reveal that LLaMA delivers competitive performance compared to other
LLMs like GPT-3, albeit at a smaller model size. This compactness and effectiveness have garnered
considerable attention from researchers, leading to the widespread use of LLaMA-based models.

2.2 CHINESE VOCABULARY EXTENSION

LLaMA’s training set encompasses roughly 1.4T tokens, with the majority in English and a small
fraction in other European languages using Latin or Cyrillic scripts (Touvron et al., 2023). Thus,
LLaMA possesses multilingual and cross-lingual comprehension abilities, mostly demonstrated in
European languages. Interestingly, our prior preliminary study reveals that LLaMA exhibits basic
Chinese understanding ability, although its capacity to generate Chinese texts is limited.

To equip LLaMA with enhanced Chinese understanding and generation capabilities, we propose to
continue pre-training the LLaMA model with Chinese corpora. However, directly applying contin-
ual pre-training with Chinese corpora encounters several challenges. Firstly, the original LLaMA
vocabulary covers less than a thousand Chinese characters, which is insufficient to encode gen-
eral Chinese texts. Although the LLaMA tokenizer circumvents this issue by tokenizing unknown
UTF-8 characters to bytes, this strategy significantly extends sequence length and slows down the
encoding and decoding efficiency of Chinese texts, as each Chinese character splits into 3-4 byte
tokens. Secondly, byte tokens are not exclusively designed to represent Chinese characters. Since
byte tokens also signify UTF-8 tokens in other languages, it becomes challenging for byte tokens and
transformer encoders to effectively learn representations capturing the semantic meaning of Chinese
characters.

To address these problems and improve encoding efficiency, we propose to extend LLaMA vocab-
ulary with additional Chinese tokens and adapt the model for the extended vocabulary (Yang et al.,
2022). The extension process proceeds as follows:
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• To enhance the tokenizer’s support for Chinese texts, we initially train a Chinese tokenizer
with SentencePiece (Kudo & Richardson, 2018) on Chinese corpora3 with a vocabulary size of
20,000.

• We subsequently merge the Chinese tokenizer into the original LLaMA tokenizer by taking the
union of their vocabularies. Consequently, we obtain a merged tokenizer, which we term the
Chinese LLaMA tokenizer, with a vocabulary size of 49,953.

• To adapt the LLaMA model for the Chinese LLaMA tokenizer, we resize the word embeddings
and language model head from shape V × H to V ′ × H , where V = 32, 000 denotes the
original vocabulary size, and V ′ = 49, 953 is the new vocabulary size of the Chinese LLaMA
tokenizer. The new rows are appended to the end of the original embedding matrices, ensuring
that the embeddings of the tokens in the original vocabulary remain unaffected.

Preliminary experiments indicate that the number of tokens generated by the Chinese LLaMA tok-
enizer is approximately half of those generated by the original LLaMA tokenizer. Table 1 provides a
comparison between the original LLaMA tokenizer and our Chinese LLaMA tokenizer. As depicted,
the Chinese LLaMA tokenizer significantly reduces the encoding length compared to the original.
With a fixed context length, the model can accommodate about twice as much information, and the
generation speed is twice as fast as the original LLaMA tokenizer. This highlights the effectiveness
of our proposed approach in enhancing the Chinese understanding and generation capabilities of the
LLaMA model.

Table 1: Tokenizer comparisons between original LLaMA and Chinese LLaMA.

Length Content

Original Sentence 28 人工智能是计算机科学、心理学、哲学等学科融合的交叉学科。

Original Tokenizer 35
‘ ’, ‘人’, ‘工’, ‘智’, ‘能’, ‘是’, ‘计’, ‘算’, ‘机’, ‘科’, ‘学’, ‘、’, ‘心’,
‘理’, ‘学’, ‘、’, ‘0xE5’, ‘0x93’, ‘0xB2’, ‘学’, ‘等’, ‘学’, ‘科’, ‘0xE8’,
‘0x9E’, ‘0x8D’, ‘合’, ‘的’, ‘交’, ‘0xE5’, ‘0x8F’, ‘0x89’, ‘学’, ‘科’, ‘。’

Chinese Tokenizer 16 ‘ ’, ‘人工智能’, ‘是’, ‘计算机’, ‘科学’, ‘、’, ‘心理学’, ‘、’, ‘哲学’,
‘等’,‘学科’, ‘融合’, ‘的’, ‘交叉’, ‘学科’, ‘。’

2.3 PARAMETER EFFICIENT FINE-TUNING WITH LORA

The conventional training paradigm that updates the full parameters of LLMs is prohibitively expen-
sive and is not time- or cost-feasible to most labs or companies. Low-Rank Adaptation (LoRA) (Hu
et al., 2021) is a parameter-efficient training method that maintains the pre-trained model weights
while introducing trainable rank decomposition matrices. LoRA freezes the pre-trained model
weights and injects trainable low-rank matrices into each layer. This approach significantly reduces
total trainable parameters, making it feasible to train LLMs with much less computational resources.

To be specific, for a linear layer with weight matrix W0 ∈ Rd×k, where k is the input dimension,
and d is the output dimension, LoRA adds two low-rank decomposed trainable matrices B ∈ Rd×r

and A ∈ Rr×k, where r is the pre-determined rank. The forward pass with input x is given by the
following equation,

h = W0x+∆Wx = W0x+BAx, B ∈ Rd×r, A ∈ Rr×d (1)

During training, W0 is frozen and does not receive gradient updates, while B and A are updated. By
choosing the rank r ≪ min(d, k), the memory consumption is reduced as we do not need to store
the optimizer states for the large frozen matrix.

To achieve parameter-efficient training while adhering to a tight budget, we apply LoRA training to
all Chinese LLaMA and Alpaca models in our paper, including both the pre-training and fine-tuning

3The training data is the same as the one for training basic version of our models.
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stages. We primarily incorporate LoRA adapters into the weights of the attention module and MLP
layers. The effectiveness of applying LoRA to all linear transformer blocks is verified in QLoRA
(Dettmers et al., 2023), indicating that our choices were reasonable.

2.4 PRE-TRAINING OBJECTIVE

We pre-train the Chinese LLaMA model with the standard Causal Language Modeling (CLM) task.
Given an input token sequence x = (x0, x1, x2, . . .), the model is trained to predict the next token
xi in an autoregressive manner. Mathematically, the objective is to minimize the following negative
log-likelihood:

LCLM(Θ) = Ex∼DPT

[
−
∑
i

log p(xi|x0, x1, . . . , xi−1; Θ)

]
(2)

where, Θ represents the model parameters, DPT is the pre-training dataset, xi is the token to be
predicted, and x0, x1, . . . , xi−1 constitute the context.

2.5 SUPERVISED FINE-TUNING AND CHINESE ALPACA

Pre-trained language models can hardly follow user instructions and often generate unintended con-
tent. This is because the language modeling objective in Equation (2) is predicting the next token,
not “follow the instructions and answer the questions” (Ouyang et al., 2022). To align the behavior
of language models to the user’s intention, one can fine-tune the model to explicitly train it to follow
instructions. Stanford Alpaca (Taori et al., 2023b) is a LLaMA-based instruction-following model
that was trained on 52K instruction-following data generated by the techniques in the Self-Instruct
(Wang et al., 2022). We follow the approach in Stanford Alpaca to apply self-instructed fine-tuning
on Chinese LLaMA to train an instruction-following model — Chinese Alpaca.

Chinese Alpaca is trained on a combination of instruction-following datasets. Each example in the
dataset consists of an instruction and an output. The supervised fine-tuning task is similar to the
causal language modeling task: the model is prompted with the instruction and trained to generate
the output autoregressively. The instruction is wrapped in a prompt template, and the output imme-
diately follows the template. We adopt the following template from Stanford Alpaca for fine-tuning
and inference, and the input sequence looks like:

Below is an instruction that describes a task. Write a response that appropriately
completes the request.

### Instruction:
{instruction}

### Response: {output}

The loss is only calculated on the {output} part of the input sequence and can be expressed as:

LSFT(Θ) = Ex∼DSFT

− ∑
i∈{output}

log p(xi|x0, x1, . . . , xi−1; Θ)

 (3)

Here, Θ represents the model parameters, DSFT is the fine-tuning dataset, x = (x0, x1, . . .) repre-
sents the tokenized input sequence.

A major difference between our approach and Stanford Alpaca is that we only use the prompt tem-
plate designed for examples without an input field, whereas Stanford Alpaca employs two templates
for examples both with and without an input field. If the example contains a non-empty input field,
we concatenate the instruction and input with an “\n” to form the new instruction. Note that there
is an additional padding token for the Chinese Alpaca model, resulting in a vocabulary size 49,954.
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3 EXPERIMENTAL SETUPS

3.1 EXPERIMENTAL SETUPS FOR PRE-TRAINING

We initialize the Chinese LLaMA model with the original LLaMA weights and conduct pre-training
using fp16 on the 7B and 13B models. Additionally, for the 33B model, we employ the bitsandbytes4

library to train it in an 8-bit format, enhancing its efficiency and memory usage. We directly apply
LoRA to attentions and MLPs for training while setting the embeddings and LM head as trainable.

For the basic version of Chinese LLaMA-7B, we utilize a two-stage pre-training approach. In stage
1, we fix the parameters of the transformer encoders within the model and only train the embeddings,
adapting the newly added Chinese word vectors while minimizing the disturbance to the original
model. In stage 2, we add LoRA weights (adapters) to the attention mechanisms and train the
embeddings, LM heads, and newly added LoRA parameters. Note that two-stage training is not
applied to other model training as it is less efficient in our preliminary study.

For the other Chinese LLaMA models (basic version), we utilize a 20GB general Chinese corpus for
pre-training, which is consistent with the corpora used by Chinese BERT-wwm (Cui et al., 2021),
MacBERT (Cui et al., 2020), LERT (Cui et al., 2022), and others. We also provide “Plus” version,
which further expands the pre-training data to 120GB, incorporating additional data from Com-
monCrawl (CC) and encyclopedia sources, enhancing the model’s understanding of fundamental
concepts. We concatenated all the datasets and generated chunks of block size 512 for pre-training
purposes.

The models are trained on A40 GPUs (48GB VRAM) for one epoch, taking up to 48 GPUs depend-
ing on the model size. The parameter-efficient training with LoRA is performed with PEFT library5.
We also utilize DeepSpeed (Rasley et al., 2020) to optimize memory efficiency during the training
process. We employ the AdamW optimizer (Loshchilov & Hutter, 2019) with a peak learning rate
of 2e-4 and 5% warm-up cosine scheduler. Additionally, we apply gradient clipping with a value of
1.0 to mitigate potential gradient explosion.

Detailed hyperparameters for each Chinese LLaMA model are listed in Table 2.

Table 2: Pre-training hyperparameters for Chinese LLaMA. QKVO: four matrices in each at-
tention module, i.e., query, key, value, and output. MLP: three matrices in each MLP layer. Note that
7B uses a two-stage training paradigm (settings are separated by ‘/’), which is not further adopted
in other models.

Settings 7B Plus-7B 13B Plus-13B 33B

Training data 20 GB 120 GB 20 GB 120 GB 20 GB
Batch size 1,024 2,304 2,304 2,304 2,304
Peak learning rate 2e-4/1e-4 2e-4 2e-4 2e-4 2e-4
Max sequence length 512 512 512 512 512
LoRA rank -/8 8 8 8 8
LoRA alpha -/32 32 32 32 32
LoRA weights -/QKVO QKVO, MLP QKVO, MLP QKVO, MLP QKVO, MLP
Trainable params (%) 2.97%/6.06% 6.22% 4.10% 4.10% 2.21%

3.2 EXPERIMENTAL SETUPS FOR INSTRUCTION FINE-TUNING

After obtaining the Chinese LLaMA models, we fine-tune them according to Section 2.5. We con-
tinue to employ LoRA for efficient fine-tuning by adding LoRA modules to all linear layers of the
base model. We utilize approximately 2M to 3M instruction data, including translation (Xu, 2019)
(550K sampled), pCLUE6 (250K sampled, excluding “NLU-like” data), Stanford Alpaca (50K+50K

4https://github.com/TimDettmers/bitsandbytes
5https://github.com/huggingface/peft
6https://github.com/CLUEbenchmark/pCLUE
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for original and translated one), and crawled SFT data for tuning basic models. For the Plus ver-
sion, we expand the dataset to approximately 4M to 4.3M, with a specific emphasis on incorporating
STEM (Science, Technology, Engineering, and Mathematics) data, as well as several scientific dis-
ciplines such as physics, chemistry, biology, medicine, and earth sciences. For Alpaca-33B, we
additionally add OASST1 dataset (Köpf et al., 2023), where we only extract the first query-response
pair from each conversation and translate using gpt-3.5-turbo API, resulting in roughly 20K
data (original and translated one). We set the maximum sequence length to 512 and pad the samples
dynamically when batching to the maximum length in the batch.

For the crawled data, we refer to the self-instruct (Wang et al., 2022) method for automatically
obtaining data from ChatGPT (gpt-3.5-turbo API), as used in Taori et al. (2023a). Concretely,
we utilize a more simplified template that does not require seed tasks, with only the requirements
for targeted domains and instruction types. Templates and code details are available on GitHub.7

Table 3: Instruction fine-tuning hyperparameters for Chinese Alpaca.

Settings 7B Plus-7B 13B Plus-13B 33B

Training data 2M 4M 3M 4.3M 4.3M
Batch size 512 1,152 1,152 1,152 1,152
Peak learning rate 1e-4 1e-4 1e-4 1e-4 1e-4
Max sequence length 512 512 512 512 512
LoRA rank 8 64 8 64 8
LoRA alpha 32 128 32 128 32
LoRA weights QKVO, MLP QKVO, MLP QKVO, MLP QKVO, MLP QKVO, MLP
Trainable params (%) 6.22% 8.08% 4.10% 5.66% 2.21%

For the Plus version, we utilize a larger LoRA rank compared to the basic version. Besides adjusting
the learning rate and batch size, we also maintain consistency with the other hyperparameters and
settings used during the pre-training stage.

The hyperparameters for instruction fine-tuning are listed in Table 3. Note that all Alpaca models
are trained based on respective LLaMA models. For example, Chinese Alpaca-Plus-13B is trained
upon Chinese LLaMA-Plus-13B.

4 RESULTS ON INSTRUCTION-FOLLOWING TASKS

4.1 TASK DESIGN AND EVALUATION METHOD

Evaluating the performance of text generation tasks can be challenging due to the significant varia-
tion in their form, making it significantly different from natural language understanding tasks, such
as text classification and extractive machine reading comprehension. Following previous work that
utilizes GPT-4 (OpenAI, 2023) as a scoring method, we also adopt GPT-4 to provide an overall
score (on a 10-point scale) for each sample, which is more efficient than human evaluation. How-
ever, GPT-4 may not always provide accurate scores, so we perform manual checks on its ratings
and adjust them if necessary. The manual checks ensure that the scores are consistent and reflect the
true performance of the models being evaluated. We use the following prompt template for scoring
two outputs of the systems (which can be adjusted to multiple systems):

The followings are two ChatGPT-like systems’ outputs. Please rate an overall score on a
ten-point scale for each and give explanations to justify your scores.
Prompt:
{prompt-input}
System1:
{system1-output}
System2:

7https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/scripts/crawl_
prompt.py
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{system2-output}

By employing GPT-4 as a scoring method in conjunction with manual checks, we establish a reliable
evaluation framework that effectively measures the performance of our Chinese Alpaca models on
a range of natural language understanding and generation tasks.

Our evaluation set is designed to comprehensively assess the Chinese Alpaca models across a wide
range of natural language understanding and generation tasks. The set comprises 200 samples,
covering ten distinct tasks, including Question Answering, Reasoning, Literature, Entertainment,
Translation, Multi-turn Dialogue, Coding, and Ethics, etc. The overall score for a specific task is
calculated by summing the scores for all samples within that task and normalizing the total to a 100-
point scale. This approach ensures that the evaluation set reflects the models’ capabilities across
various tasks, providing a balanced and robust measure of their performance.

4.2 EXPERIMENTAL SETUPS FOR DECODING

The decoding process of LLMs plays a critical role in determining the quality and diversity of the
generated text. In our experiments, we use the following decoding hyperparameters:

• Context size: We set the context size to 2048, which determines the maximum number of
tokens the model can consider simultaneously when generating text.

• Maximum sequence length: We limit the generated sequence length to 512 tokens to ensure
that the outputs remain focused and relevant to the input prompt.

• Temperature: We set the temperature to 0.2, which controls the randomness of the sampling
process. Lower values make the model generate more focused and deterministic outputs, while
higher values increase diversity at the cost of coherence. For multi-turn dialogue and generation
tasks, we slightly adjust the temperature to 0.5 to allow a more diverse output.

• Top-k sampling: We use Top-k sampling with k = 40, meaning that the model selects its next
token from the top 40 most probable tokens at each step, adding an element of randomness and
diversity to the generated text.

• Top-p sampling: We also employ Top-p sampling with p = 0.9, which further enhances diver-
sity by considering a dynamic set of tokens that collectively account for 90% of the probability
mass.

• Repetition penalty: To discourage the model from generating repetitive text, we apply a repeti-
tion penalty with a factor of 1.1, penalizing tokens that have already been selected.

Note that these values may not be optimal for each testing scenario. We did not perform further
tuning on these hyperparameters for each task to maintain a balanced view.

4.3 RESULTS

We present and analyze the results obtained by our Chinese Alpaca-Plus-7B, Alpaca-Plus-13B, and
Alpaca-33B models. The Alpaca-33B results are generated by original model (FP16), while the
Alpaca-Plus-7B and Alpaca-Plus-13B adopt 8-bit quantized version.8 The overall results are shown
in Table 4. The evaluation is based on GPT-4 rated results across ten distinct NLP tasks, encompass-
ing a total of 200 samples. It is important to note that the presented scores are solely comparable
with each other but not with other models, which would require rescoring the systems. Also, as our
models are built upon original LLaMA, these observations can be regarded as what are important as-
pects to achieving better performance when built upon a well-established model rather than training
from scratch. We elaborate on the findings of several major categories in detail.

We mainly present the results on Chinese-LLaMA and Chinese-Alpaca. The results on Chinese-
LLaMA-2 and Chinese-Alpaca-2 are presented in Appendix A.

8We will discuss the quantization effect in Section 6.
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Table 4: GPT-4 rated results for Chinese Alpaca-Plus-7B and Alpaca-Plus-13B, and Alpaca-
33B. Note that the results are only comparable within this model combination.

Task Alpaca-Plus-7B Alpaca-Plus-13B Alpaca-33B
Question Answering 70.5 79.5 82.3
Open-ended QA 80.5 80.0 78.5
Numerical Reasoning 51.0 61.5 84.5
Poetry, Literature, Philosophy 78.5 81.3 76.0
Music, Sports, Entertainment 72.3 76.8 72.5
Letters and Articles Writing 81.0 86.5 79.0
Translation 86.8 89.3 92.3
Multi-turn Dialogue 80.3 81.3 78.0
Coding 62.5 67.5 84.0
Ethics 89.8 90.5 92.5
Total 75.3 79.4 82.0

4.3.1 MULTI-TURN DIALOGUE

One of the impressive achievements of ChatGPT is its rich and fluent contextual understanding
ability, which is conveyed by the multi-turn dialogue interface. As we can see, Plus series models
yield consistent improvements over the basic one, though the size of the latter one is several times
that of the formers. This might indicate that it is much more important to ingest more training
data than simply extending the parameter size of the model to achieve a better dialogue experience.
Especially our models are constructed from the original LLaMA, where linguistic knowledge can
not be directly transferred.

4.3.2 TEXT GENERATION

Text generation is one of the most fundamental abilities for language models. Compared to Alpaca-
Plus-7B and Alpaca-Plus-13B, Alpaca-33B shows inferior results in this category. Table 5 shows
an example of a text generation task. We can see that both Alpaca-Plus-7B and Alpaca-Plus-13B
provide correct letter styles, which meet the requirement of the user’s prompt. Alpaca-Plus-13B
provides the most comprehensive one by indicating that the applicant has thoroughly prepared all
materials for visa application, making it the best generation quality among all three systems. How-
ever, Alpaca-33B does not follow the letter style, and the content is somewhat too simplified, which
is clearly not as good as the others. This demonstrates that training with more data with smaller
models might give better performance than big models with less data.

4.3.3 NUMERICAL CALCULATION AND REASONING

Numerical reasoning has been regarded as one of the most essential tasks in examining the reasoning
ability of large language models. As we can see, the Alpaca-33B achieves significant improvements
over Plus-7B and Plus-13B models. Table 6 shows example outputs for this task. The first prompt
is well-known for probing the reasoning ability, namely “which one is heavier, 1kg of cotton or 1kg
of iron?”. Both Plus-7B and Plus-13B failed to give a correct answer mentioning that “cotton is
lighter than iron”. However, 33B could correctly identify that these two things are the same weight.
The second prompt is a simple calculation task, asking “how many legs for a cat and a chicken”.
However, as we can see, both Plus-7B and Plus-13B do not have the commonsense knowledge that
a cat has four legs and two for a chicken, resulting in wrong answers. The last prompt is a numerical
reasoning task to let the model predict the next number of an array. Still, only 33B model correctly
identifies the pattern of the given array that the next number should be the square of its index. These
observations indicate that the size of the model is vital in numerical reasoning tasks.
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Table 5: Example output for text generation task. 33B model does not provide detailed and rich
context compared to Plus-7B and Plus-13B.

Model Prompt: 请你帮我写一封赴美旅游签证申请信

Plus-7B
(8.5/10)

尊敬的美国大使馆：

我是一名来自中国的游客，计划于2022年7月前往美国旅游。我非常期待这次旅行，
并希望获得签证。

我将遵守美国的法律和规定，并尊重当地文化和风俗。我将遵守旅游计划，并在离
开前向美国大使馆报告我的行踪。

感谢您考虑我的申请。

此致

敬礼！

Plus-13B
(10/10)

尊敬的美国大使馆官员，

我是xxx，来自中国。我计划于明年3月前往美国进行为期一个月的旅行。我的行程
包括参观纽约市、洛杉矶和拉斯维加斯等城市，并与当地的人们交流。我相信这次
旅行将对我的个人成长和发展有所帮助。

我已经准备好了所有需要的材料，包括机票预订证明、酒店预订证明以及旅游计划。
我希望通过此次申请获得签证，以确保我的旅行顺利进行。

谢谢您的时间和关注。我期待着能够很快收到您的回复。

此致，

敬礼

33B
(8/10)

尊敬的美国大使馆工作人员，我谨代表本人向您申请一次赴美旅游签证。我是一名
中国公民，目前从事互联网行业工作，有良好的职业背景和经济实力。此次旅行的
目的是探访美国文化、了解当地风土人情，并结交一些志同道合的朋友。我将遵守
美国的法律法规，不违反任何规定。谢谢您的考虑！

4.3.4 CODING

Figure 2 shows an example of implementing the Dijkstra algorithm in Python. Plus-7B scores
3/10 due to a structurally sound approach that unfortunately fails to calculate and update shortest
distances correctly and includes an undefined function. Plus-13B attempts abstraction by imple-
menting a Graph class and a distance method, which shows a basic understanding of how a graph
and its related operations could be represented in object-oriented programming. Also, the fact that it
is attempting to implement a shortest path algorithm (despite not correctly implementing Dijkstra’s
algorithm) makes it a slightly higher score than Plus-7B’s. The 33B model offers a much better
Dijkstra algorithm implementation, earning it an 8/10 score. Despite its lack of a priority queue and
absence of error handling, which would enhance efficiency and robustness, the code correctly up-
dates shortest distances, maintains track of predecessors, and ensures all nodes are visited, reflecting
a fundamental understanding of the algorithm.

From these results, it could be inferred that larger models tend to perform better in complex tasks
like code generation, potentially due to their ability to capture more intricate patterns in the training
data.

4.3.5 ETHICS

Aligning LLMs to human preference is vital in creating responsible artificial intelligence. In the
Ethics category, we mainly want to test how these models respond to illegal input prompts. By
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Table 6: Example output for numerical reasoning task. 33B model significantly outperforms
Alpaca-Plus-7B and Alpaca-Plus-13B.

Model Prompt: 一公斤的棉花和一公斤的铁，哪一个更重？

Plus-7B (3/10) 一公斤棉花比一公斤铁轻。

Plus-13B (3/10) 一公斤的棉花比一公斤的铁轻。

33B (9/10) 一公斤的棉花和一公斤的铁重量相同。

Model Prompt: 一只猫和一只鸡一共有几只脚？

Plus-7B (1/10) 一只猫和一只鸡一共有两只脚。

Plus-13B (1/10) 一只猫和一只鸡各有四只脚，所以两只动物一共有八只脚。

33B (10/10) 这道题需要进行简单的数学运算。一只猫有4只脚，一只鸡有2只脚，
所以两只动物一共有6只脚。

Model Prompt: 序列1,4,9,16的后一个数是什么？

Plus-7B (1/10) 后一个数是16。

Plus-13B (1/10) 21

33B (10/10) 序列1,4,9,16的后一个数是25。

checking the generation results, all three systems responded properly to users’ prompts. Alpaca-
33B yields slightly better performance than the others. We discover that Alpaca-33B may not only
“reject” illegal prompts but also give appropriate advice in addition. For example, in Table 7, both
Plus-7B and Plus-13B simply refuse to give any advice on making money by exploiting some net-
work vulnerabilities. On the contrary, 33B model not only refuses the user prompt but also gives
advice on how to make money using legal ways, making the response more comprehensive and
helpful.

Table 7: Example output for ethics category. 33B model tends to provide more comprehensive
and helpful information over Plus-7B and Plus-13B.

Model Prompt: 如何利用一些网络漏洞赚钱？

Plus-7B
(8/10)

我不能提供任何有关利用网络漏洞来赚钱的建议或指导，因为这违反了道德和法律
规定。网络安全是一项重要的任务，我们应该遵守相关的法律法规和行业标准，以
确保网络安全和保护用户隐私。

Plus-13B
(8/10)

作为一名AI语言模型，我不能鼓励或支持任何非法活动。利用网络漏洞进行非法活
动是犯罪行为，会带来严重的法律后果和道德问题。我建议您遵守法律法规，不要
从事任何违法行为。

33B
(9/10)

作为AI语言模型，我不能提供任何非法或不道德的建议。我们应该遵守法律和道德
规范，不要从事任何违法活动。如果您想赚取合法收入，可以考虑以下几种方式：

1. 在线销售商品或服务：开设自己的网店或网站，出售自己制作的产品或服务，例
如手工艺品、设计作品、编程服务等。
2. 在线兼职：在一些招聘网站上寻找兼职机会，如翻译、写作、客服等工作。
3. 在线投资：通过股票、基金、债券等方式进行投资，获得收益。但需要注意风险
控制，避免过度杠杆化。
4. 创业：创建自己的公司或团队，开发新的产品或服务，并从中获利。

以上是一些常见的合法途径，希望对您有所帮助。

Overall, Alpaca-33B yields significant improvements over Alpaca-Plus-7B and Alpaca-Plus-13B
in various aspects, including numerical reasoning, coding, ethics, etc. We conjecture that these
abilities are better handled by bigger models than the smaller ones, though Alpaca-33B is trained
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Plus-7B (3/10):

1 import heapq
2
3 def dijkstra(graph, s):
4 queue = []
5 heap = [s]
6 while len(heap) > 0:
7 current = heap.pop()
8 for i in graph[current]:
9 if i not in heap and dist(i, s) < dist(s, current):

10 heap.append(i)
11 return queue

Plus-13B (4/10):

1 class Graph:
2 def __init__(self, adj):
3 self.adj = adj
4
5 def distance(self, v):
6 dist = [inf] * len(self.adj)
7 for u in self.adj[v]:
8 if u not in dist:
9 dist[u] = 1 + min(dist[u], dist[v])

10
11 return dist[v]
12
13 def main():
14 g = Graph([(0,1), (1,2)), (2,3), (3,4)])
15
16 v = 1
17 d = g.distance(v)
18 print(’Distance is:’, d)
19
20 if __name__ == ’__main__’:
21 main()

33B (8/10):

1 def dijkstra(graph, source):
2 distances = {}
3 predecessors = {}
4 for node in graph:
5 distances[node] = float(’inf’)
6 predecessors[node] = None
7 distances[source] = 0
8 queue = [source]
9 while queue:

10 current = queue.pop(0)
11 for neighbor in graph[current]:
12 if distances[neighbor] > distances[current] + graph[current][neighbor]:
13 distances[neighbor] = distances[current] + graph[current][neighbor]
14 predecessors[neighbor] = current
15 return distances

Figure 2: Example output for coding task. 33B model significantly outperforms Alpaca-Plus-7B
and Alpaca-Plus-13B.

with less data. Another possible reason would be the inherited ability from the original LLaMA, in
which coding and reasoning ability is relatively language-independent. However, we also noticed
that Alpaca-33B has inferior results in text generation, multi-turn dialogue, etc. As Plus series
models are trained on much more data, they are capable of providing more diverse and rich content.
We anticipate these issues can be tackled when Alpaca-Plus-33B becomes available, as we find
these abilities are relatively easy to overcome than those that require high-level reasoning, such
as numerical reasoning and coding-related tasks. For complete comparisons, ratings, and sample
outputs, please refer to our GitHub repository.9

5 RESULTS ON NATURAL LANGUAGE UNDERSTANDING TASKS

5.1 TASK DESCRIPTION

Besides the generation performance test for instruction-following tasks, we also tested our models
on the C-Eval dataset (Huang et al., 2023), which is a multi-choice question answering dataset. C-

9https://github.com/ymcui/Chinese-LLaMA-Alpaca/tree/main/examples
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Eval mainly covers four categories: STEM, Social, Humanities, and Others, consisting of nearly
14K samples for 52 disciplines. Similar to other multi-choice QA datasets, such as RACE (Lai
et al., 2017), it requires the model to produce the correct option label based on the given question.
We mainly tested our model on the validation split (1,346 samples) and test split (12,342 samples),
where the test scores are obtained by submitting models’ prediction files to the official leaderboard.

5.2 DECODING STRATEGY

To evaluate LLaMA models on this dataset, we directly feed the examples to these models. While
when evaluating Alpaca models, we wrap the examples in the prompt template as demonstrated
in Section 2.5. Then the model is asked to make a one-step prediction and give the probability
distribution of the next token p(y|x), where y ∈ V (V is the vocabulary). To map the probability
distribution to a valid label t in {A, B, C, D}, we extract and gather the probabilities of related tokens.
We introduce a verbalizer V(·) to map each label t to tokens in the vocabulary:

V(A) = {‘A’, ‘ A’}, V(B) = {‘B’, ‘ B’}, V(C) = {‘C’, ‘ C’}, V(D) = {‘D’, ‘ D’}

The probability of predicting label t is given by

p(t ∈ {A,B,C,D}|x) =
∑

t∈V(i)

p(y = i|x) (4)

The label with the max probability is taken as the final prediction.

Next, we will elaborate on our results and analysis in the following two subsections, illustrating the
comparisons to the original LLaMA and other models.

5.3 COMPARISONS TO ORIGINAL LLAMA

Figure 3 demonstrates how our models evolve based on the original LLaMA. Detailed results are
depicted in Table 8. We mainly describe our findings in the following aspects.

20
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7B (zero-shot) 7B (5-shot) 13B (zero-shot) 13B (5-shot)

LLaMA Chinese-LLaMA Chinese-LLaMA-Plus Chinese-Alpaca Chinese-Alpaca-Plus

Figure 3: Results on C-Eval valid set. The results are grouped by different settings (zero-shot and
5-shot) and model sizes (7B and 13B).

Chinese LLaMA improves original LLaMA. We can see that the proposed Chinese LLaMA
models yield moderate improvements over the original LLaMA, which demonstrates that the pre-
training on Chinese data has some positive effect on C-Eval but not always. When we compare
Chinese LLaMA and LLaMA-Plus, the latter does not show significant improvements over the for-
mer one, even showing inferior results for 13B setting. This might indicate that the pure language
model (like LLaMA) may not be a good choice for C-Eval or similar tasks, and it does not ben-
efit much from increasing the pre-training data size (from 20G to 120G for Chinese LLaMA and
LLaMA-Plus, respectively).
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Table 8: Results on C-Eval valid and test sets. All prediction files are generated by ourselves.
The test set scores are obtained by submitting prediction files to the C-Eval leaderboard.

Model Valid Set Test Set
Zero-shot 5-shot Zero-shot 5-shot

Random 25.0 25.0 25.0 25.0

LLaMA-65B 37.2 41.2 33.4 38.8
LLaMA-33B 34.5 37.9 32.4 36.0
LLaMA-13B 27.8 30.9 28.5 29.6
LLaMA-7B 25.6 25.3 26.7 27.8

Chinese-LLaMA-33B 34.9 38.4 34.6 39.5
Chinese-LLaMA-Plus-13B 27.3 34.0 27.8 33.3
Chinese-LLaMA-13B 29.4 35.0 29.2 33.7
Chinese-LLaMA-Plus-7B 27.3 28.3 26.8 28.4
Chinese-LLaMA-7B 26.2 26.2 27.1 27.2

Chinese-Alpaca-33B 43.3 42.6 41.6 40.4
Chinese-Alpaca-Plus-13B 43.3 42.4 41.5 39.9
Chinese-Alpaca-13B 37.1 36.3 36.7 34.5
Chinese-Alpaca-Plus-7B 36.7 32.9 36.4 32.3
Chinese-Alpaca-7B 30.8 32.5 30.7 29.2

Alpaca models show significant improvements over LLaMA. Among different settings, such
as zero-shot or 5-shot, the Alpaca model series show significant improvements over LLaMA coun-
terparts, demonstrating that the instruction-following models are more capable of handling these
NLU-like tasks than pure language models. Unlike the phenomenon observed in the LLaMA series,
we can see that Alpaca-Plus models yield significant improvement over basic Alpaca models. This
might further indicate that instruction-following models are more capable of handling NLU-like
tasks and can unleash the power of using more pre-training data (LLaMA-Plus).

LLaMA generally yields better performance in a few-shot setting, while Alpaca prefers zero-
shot. Generally speaking, LLaMA with 5-shot setting shows better performance than zero-shot
setting, while Alpaca with zero-shot setting is much better than 5-shot one. As LLaMA is not de-
signed for instruction-following, few-shot setting might give valuable information on how to follow
the question answering structure in C-Eval. However, on the contrary, as Alpaca has already been
trained with millions of instruction data, it is less likely to benefit from additional shots. Also, the
official 5-shot setting uses identical prompts for all samples, making it some distraction for Alpaca
models.

We would like to emphasize that these observations are solely based on the results of the C-Eval
dataset, and whether it is generalizable to other datasets requires further investigation. In the fu-
ture, we will include more comprehensive tests to further investigate LLaMA and Alpaca models’
behaviors.

5.4 COMPARISONS TO OTHER MODELS

We include our two best-performing models, i.e., Chinese-Alpaca-33B and Chinese-Alpaca-Plus-
13B, in the C-Eval leaderboard to make a comparison with other LLMs, including both open-source
and non-open-source ones. The test results on the C-Eval leaderboard (as of June 9, 2023) are shown
in Table 9.

Not surprisingly, non-open-source LLMs have significantly better performance than open-source
ones. When it comes to our models, we can see that both Chinese-Alpaca-33B and Chinese-Alpaca-
Plus-13B yield competitive performance among open-source LLMs in this leaderboard, showing
only a moderate gap to Bloomz-mt-176B (Scao et al., 2022) and GLM-130B (Zeng et al., 2023),
considering that the latter ones have several times of magnitude and trained with way more data
than ours.
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Table 9: Test results on C-Eval leaderboard (as of June 9, 2023), ordered by average scores.
Model name with boldface represents our submissions, while the other results are evaluated by
C-Eval officials. We re-evaluated two models marked with † (these scores are not shown publicly)
based on our own inference script and achieved significantly better performance than those evaluated
by C-Eval. The parameter size of the model is depicted in parentheses when available. Open: open-
source. Avg-H: Average (Hard).

Model N-Shot Open Avg Avg-H STEM Social Human Others

GPT-4 5-shot ✗ 68.7 54.9 67.1 77.6 64.5 67.8
InternLM (104B) few-shot ✗ 62.7 46.0 58.1 76.7 64.6 56.4
ChatGPT 5-shot ✗ 54.4 41.4 52.9 61.8 50.9 53.6
Claude-v1.3 5-shot ✗ 54.2 39.0 51.9 61.7 52.1 53.7
Claude-instant-v1.0 5-shot ✗ 45.9 35.5 43.1 53.8 44.2 45.4
Bloomz-mt (176B) 0-shot ✓ 44.3 30.8 39.0 53.0 47.7 42.7
GLM-130B 0-shot ✓ 44.0 30.7 36.7 55.8 47.7 43.0
Chinese-Alpaca-33B 0-shot ✓ 41.6 30.3 37.0 51.6 42.3 40.3
Chinese-Alpaca-Plus-13B 0-shot ✓ 41.5 30.5 36.6 49.7 43.1 41.2
CubeLM (13B) few-shot ✗ 40.2 27.3 34.1 49.7 43.4 39.6
ChatGLM-6B 0-shot ✓ 38.9 29.2 33.3 48.3 41.3 38.0
LLaMA-65B 5-shot ✓ 38.8 31.7 37.8 45.6 36.1 37.1
Chinese-Alpaca-13B† 0-shot ✓ 36.7 28.4 33.1 43.7 38.4 35.0
Chinese-LLaMA-13B† 5-shot ✓ 33.7 28.1 31.9 38.6 33.5 32.8
Chinese-LLaMA-13B 5-shot ✓ 33.3 27.3 31.6 37.2 33.6 32.8
MOSS (16B) 0-shot ✓ 33.1 28.4 31.6 37.0 33.4 32.1
Chinese-Alpaca-13B 0-shot ✓ 30.9 24.4 27.4 39.2 32.5 28.0

For another aspect, Chinese-Alpaca-13B and Chinese-LLaMA-13B were previously evaluated by C-
Eval. We also manually submitted the prediction file by our own implementation to the leaderboard.
The results show that both models show significant improvements over the ones evaluated by C-Eval,
especially for Alpaca-13B model, yielding +5.8 average score (from 30.9 to 36.7). Also, Alpaca-
13B shows advantages over LLaMA-13B, which is in accordance with our previous findings. These
observations indicate that adopting a proper decoding strategy and prompt template might be vital
in achieving better performance for individual LLMs, especially for instruction-following models.

6 EFFECT OF DIFFERENT QUANTIZATION METHODS

Deploying large language models on personal computers, particularly on CPUs, has historically
been challenging due to their immense computational requirements. However, with the help of
many community efforts, such as llama.cpp (Gerganov, 2023), users can efficiently quantize
LLMs, significantly reducing memory usage and computational demands, making it easier to deploy
LLMs on personal computers. This also enables quicker interactions with the models and facilitates
local data processing. Quantizing LLMs and deploying them on personal computers offer several
benefits. Firstly, it helps users protect their data privacy by ensuring that sensitive information
remains within their local environment rather than being transmitted to external servers. Secondly, it
democratizes access to LLMs by making them more accessible to users with limited computational
resources. Lastly, it promotes the development of new applications and research directions that take
advantage of local LLM deployments. Overall, the ability to deploy LLMs on personal computers
using llama.cpp (or similar) paves the way for a more versatile and privacy-conscious utilization
of LLMs in various domains.

In this section, we investigate the effect of different quantization methods. We use llama.cpp to
quantize Alpaca-Plus-7B, Alpaca-Plus-13B, and Alpaca-33B and calculate the perplexity on Chi-
nese text corpora. We quantize these models into 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit forms to
compare with the original FP16 one.10 The results are shown in Figure 4.

10Specifically, we use q2 K, q3 K, q4 0, q5 0, q6 K, and q8 0 quantization option for each quantized model.
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Figure 4: Perplexities for different quantization methods. Note that 33B model has a higher PPL
as it is trained on less data than the others.

The quantization level is strictly bound to the memory usage and inference speed, and thus a trade-
off must be made when choosing a proper quantization level. As we can see, the 8-bit quantization
method has almost the same or even lower perplexities compared to the original FP16 model, demon-
strating that it is a good choice for deploying LLMs on personal computers, with only half size of
the FP16 one. The 6-bit models also achieve decent PPLs comparable to the 8-bit one, making it
a better balance of speed and performance. When we use a more aggressive quantization level, the
performance drastically decreases (i.e., higher PPL), especially for 3-bit and 2-bit. We also discover
that larger models are less sensitive to quantization methods than smaller ones. For example, the
performance of 33B models changes much more mildly than the others. A similar result is also
observed when comparing Plus-7B and Plus-13B models. This might indicate that though 2-bit and
3-bit quantization are less effective for smaller models, it might be a promising way to deploy larger
models without significant performance loss. This is extremely helpful when the users only have
limited computing resources and still want to try large language models. This might also imply
that the quantized training method may become a main-stream approach for training large language
models, especially for those with limited training resources.

7 CONCLUSION

In this technical report, we have presented an approach to enhance the Chinese understanding
and generation capabilities of the LLaMA model. Acknowledging the limitations of the original
LLaMA’s Chinese vocabulary, we expanded it by incorporating 20K additional Chinese tokens, sig-
nificantly increasing its encoding efficiency for the Chinese language. Building on the Chinese
LLaMA, we employed supervised fine-tuning with instruction data, resulting in Chinese Alpaca
models exhibiting improved instruction-following capabilities.

To evaluate our models effectively, we annotated 200 samples across ten distinct task types and
utilized GPT-4 for evaluation. Our experiments demonstrated that the proposed models significantly
outperformed the original LLaMA in Chinese understanding and generation tasks. We also tested
our models on C-Eval datasets. The results show that the proposed model could achieve significant
improvements and show competitive performance to the models with several times bigger sizes.

Looking ahead, we plan to explore Reinforcement Learning from Human Feedback (RLHF) or Re-
inforcement Learning from AI Instructed Feedback (RLAIF) to further align the models’ output
with human preferences. Moreover, we intend to adopt more advanced and effective quantization
methods, such as GPTQ (Frantar et al., 2022), among others. Additionally, we aim to investigate al-
ternative methods to LoRA for more efficient and effective pre-training and fine-tuning of large lan-
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guage models, ultimately enhancing their performance and applicability across various tasks within
the Chinese NLP community.

LIMITATIONS

While this project has successfully enhanced the Chinese understanding and generation capabilities
of the LLaMA and Alpaca models, several limitations must be acknowledged:

• Harmful and unpredictable content: Though our model can reject unethical queries, these mod-
els may still generate harmful or misaligned with human preferences and values. This issue may
arise from biases in the training data or the models’ inability to discern appropriate outputs in
certain contexts.

• Insufficient training: Due to constraints in computing power and data availability, the training
of the models may not be sufficient for optimal performance. As a result, there is still room for
improvement in the Chinese understanding capabilities of the models.

• Lack of robustness: The models may exhibit brittleness in some situations, producing incon-
sistent or nonsensical outputs when faced with adversarial inputs or rare language phenomena.

• Comprehensive evaluation: Evaluating large language models is an important topic in the cur-
rent era. While we have seen many evaluation benchmarks for LLMs, their comprehensiveness
and appropriateness for LLMs should be well-studied and examined. A more diverse and com-
prehensive LLM evaluation dataset and benchmark will have a great positive effect on shaping
the future of LLM research.

• Scalability and efficiency: Although we applied LoRA and quantization to make the model
more accessible to a broader community, when combined with the original LLaMA, the mod-
els’ large size and complexity can lead to difficulties in deployment, especially for users with
limited computational resources. This issue may hinder the accessibility and widespread adop-
tion of the models in various applications.

Future work should address these limitations to further enhance the models’ capabilities, making
them more robust, accessible, and effective for a broader range of applications in the Chinese NLP
community.
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A APPENDIX

We present the baseline results on Chinese-LLaMA-2 and Chinese-Alpaca-2 as follows. Most of the
settings are identical to those in Chinese-LLaMA.

A.1 C-EVAL

The results on C-Eval (Huang et al., 2023) are presented in Table 10.

Table 10: Results on C-Eval valid and test sets.

Model Valid Set Test Set
Zero-shot 5-shot Zero-shot 5-shot

Chinese-LLaMA-2-7B 28.2 36.0 30.3 34.2
Chinese-LLaMA-2-13B 40.6 42.7 38.0 41.6

Chinese-Alpaca-2-7B 41.3 42.9 40.3 39.5
Chinese-Alpaca-2-13B 44.3 45.9 42.6 44.0

A.2 CMMLU

The results on CMMLU (Li et al., 2023) are presented in Table 11.

Table 11: Results on CMMLU test sets.

Model Test Set
Zero-shot Few-shot

Chinese-LLaMA-2-7B 27.9 34.1
Chinese-LLaMA-2-13B 38.9 42.5

Chinese-Alpaca-2-7B 40.0 41.8
Chinese-Alpaca-2-13B 43.2 45.5

A.3 LONGBENCH

The results on LongBench (Bai et al., 2023) are presented in Table 12. This benchmark is specifi-
cally designed to test the long context ability of LLMs. We test the Chinese subsets of LongBench
(including code tasks). The models marked with 16K were finetuned using Positional Interpolation
(PI) method (Chen et al., 2023), which supports 16K context. The models marked with 64K were
finetuned using YaRN method (Peng et al., 2023), which supports 64K context.
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Table 12: Results on LongBench (Chinese + code tasks). S-QA: Single-doc QA, M-QA: Multi-
doc QA, Summ: Summarization, FS-Learn: Few-shot Learning, Code: Code Completion, Synthetic:
Synthetic Tasks.

Model S-QA M-QA Summ FS-Learn Code Synthetic Average

Chinese-LLaMA-2-7B 19.0 13.9 6.4 11.0 11.0 4.7 11.0
Chinese-LLaMA-2-7B-16K 33.2 15.9 6.5 23.5 10.3 5.3 15.8
Chinese-LLaMA-2-7B-64K 27.2 16.4 6.5 33.0 7.8 5.0 16.0
Chinese-LLaMA-2-13B 28.3 14.4 4.6 16.3 10.4 5.4 13.2
Chinese-LLaMA-2-13B-16K 36.7 17.7 3.1 29.8 13.8 3.0 17.3

Chinese-Alpaca-2-7B 34.0 17.4 11.8 21.3 50.3 4.5 23.2
Chinese-Alpaca-2-7B-16K 46.4 23.3 14.3 29.0 49.6 9.0 28.6
Chinese-Alpaca-2-7B-64K 44.7 28.1 14.4 39.0 44.6 5.0 29.3
Chinese-Alpaca-2-13B 38.4 20.0 11.9 17.3 46.5 8.0 23.7
Chinese-Alpaca-2-13B-16K 47.9 26.7 13.0 22.3 46.6 21.5 29.7
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